SEPP: SATé-Enabled Phylogenetic Placement.

Department of Computer Science University of Texas at Austin Austin, TX 78712, USA.
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 01/2012; DOI: 10.1142/9789814366496_0024
Source: PubMed

ABSTRACT We address the problem of Phylogenetic Placement, in which the objective is to insert short molecular sequences (called query sequences) into an existing phylogenetic tree and alignment on full-length sequences for the same gene. Phylogenetic placement has the potential to provide information beyond pure "species identification" (i.e., the association of metagenomic reads to existing species), because it can also give information about the evolutionary relationships between these query sequences and to known species. Approaches for phylogenetic placement have been developed that operate in two steps: first, an alignment is estimated for each query sequence to the alignment of the full-length sequences, and then that alignment is used to find the optimal location in the phylogenetic tree for the query sequence. Recent methods of this type include HMMALIGN+EPA, HMMALIGN+pplacer, and PaPaRa+EPA.We report on a study evaluating phylogenetic placement methods on biological and simulated data. This study shows that these methods have extremely good accuracy and computational tractability under conditions where the input contains a highly accurate alignment and tree for the full-length sequences, and the set of full-length sequences is sufficiently small and not too evolutionarily diverse; however, we also show that under other conditions accuracy declines and the computational requirements for memory and time exceed acceptable limits. We present SEPP, a general "boosting" technique to improve the accuracy and/or speed of phylogenetic placement techniques. The key algorithmic aspect of this booster is a dataset decomposition technique in SATé, a method that utilizes an iterative divide-and-conquer technique to co-estimate alignments and trees on large molecular sequence datasets. We show that SATé-boosting improves HMMALIGN+pplacer, placing short sequences more accurately when the set of input sequences has a large evolutionary diameter and produces placements of comparable accuracy in a fraction of the time for easier cases. SEPP software and the datasets used in this study are all available for free at

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Marker gene studies often use short amplicons spanning one or more hypervariable regions from an rRNA gene to interrogate the community structure of uncultured environmental samples. Target regions are chosen for their discriminatory power, but the limited phylogenetic signal of short high¿throughput sequencing reads precludes accurate phylogenetic analysis. This is particularly unfortunate in the study of microscopic eukaryotes where horizontal gene flow is limited and the rRNA gene is expected to accurately reflect the species phylogeny. A promising alternative to full phylogenetic analysis is phylogenetic placement, where a reference phylogeny is inferred using the complete marker gene and iteratively extended with the short sequences from a metagenetic sample under study.ResultsBased on the phylogenetic placement approach we built Séance, a community analysis pipeline focused on the analysis of 18S marker gene data. Séance combines the alignment extension and phylogenetic placement capabilities of the Pagan multiple sequence alignment program with a suite of tools to preprocess, cluster and visualise datasets composed of many samples. We showcase Séance by analysing 454 data from a longitudinal study of intestinal parasite communities in wild rufous mouse lemurs (Microcebus rufus) as well as in simulation. We demonstrate both improved OTU picking at higher levels of sequence similarity for 454 data and show the accuracy of phylogenetic placement to be comparable to maximum likelihood methods for lower numbers of taxa.ConclusionsSéance is an open source community analysis pipeline that provides reference¿based phylogenetic analysis for rRNA marker gene studies. Whilst in this article we focus on studying nematodes using the 18S marker gene, the concepts are generic and reference data for alternative marker genes can be easily created. Séance can be downloaded from
    BMC Evolutionary Biology 11/2014; 14(1):235. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this paper I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.
    Systematic Biology 07/2014; · 11.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.
    Genomics & informatics. 09/2013; 11(3):102-113.
    This article is viewable in ResearchGate's enriched format