Article

Cell Excitability Necessary for Male Mating Behavior in Caenorhabditis elegans Is Coordinated by Interactions Between Big Current and Ether-A-Go-Go Family K+ Channels

Howard Hughes Medical Institute, Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
Genetics (Impact Factor: 4.87). 12/2011; 190(3):1025-41. DOI: 10.1534/genetics.111.137455
Source: PubMed

ABSTRACT Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.

0 Followers
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.
    PLoS Genetics 12/2013; 9(12):e1003986. DOI:10.1371/journal.pgen.1003986 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian Ether-a-go-go related gene (Erg) family voltage-gated K(+) channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus. The Drosophila Erg channel does not inactivate and closes rapidly upon repolarization. The dramatically different properties observed in mammalian and Drosophila Erg homologs bring into question the evolutionary origins of distinct Erg K(+) channel functions. Erg channels are highly conserved in eumetazoans and first evolved in a common ancestor of the placozoans, cnidarians, and bilaterians. To address the ancestral function of Erg channels, we identified and characterized Erg channel paralogs in the sea anemone Nematostella vectensis. N. vectensis Erg1 (NvErg1) is highly conserved with respect to bilaterian homologs and shares the IKr-like gating phenotype with mammalian Erg channels. Thus, the IKr phenotype predates the divergence of cnidarians and bilaterians. NvErg4 and Caenorhabditis elegans Erg (unc-103) share the divergent Drosophila Erg gating phenotype. Phylogenetic and sequence analysis surprisingly indicates that this alternate gating phenotype arose independently in protosomes and cnidarians. Conversion from an ancestral IKr-like gating phenotype to a Drosophila Erg-like phenotype correlates with loss of the cytoplasmic Ether-a-go-go domain. This domain is required for slow deactivation in mammalian Erg1 channels, and thus its loss may partially explain the change in gating phenotype.
    Proceedings of the National Academy of Sciences 03/2014; DOI:10.1073/pnas.1321716111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Although the signs of aging are clear to us all, precisely why we age is less well understood. One possibility is that as cells use oxygen to fuel the breakdown of large molecules into smaller ones to release energy, they also generate by-products called reactive oxygen species that can damage DNA. As we get older, this damage gets worse. Consistent with this idea, it has been shown that a reduced calorie intake can reduce oxidative damage in certain species, in addition to extending lifespan. Many experiments on aging have been performed on worms belonging to the species C. elegans. Male worms of this species live for an average of 11–12 days, but begin to show signs of aging—for example, a reduced ability to mate—as early as day 3 of their adult lives. Now, Guo and García have revealed that a protein called SIR-2.1, which regulates metabolism in worms, also helps to protect the animals from the effects of aging. Male worms in which the gene for this protein has been ‘knocked out’ have a normal lifespan, but show signs of aging earlier than normal males. They are also more susceptible to the damaging effects of reactive oxygen species, suggesting that SIR-2.1 may offer protection against oxidative damage. Indeed, levels of ATP—the molecule used to move energy around inside cells—are increased in knockout worms. This suggests that certain metabolic processes and the production of reactive oxygen species, are increased in the knockout worms, which speeds up the aging process. While the link between metabolism and aging is well known, the work of Guo and García offers insights into some of the molecular mechanisms that may form the basis of this relationship. DOI: http://dx.doi.org/10.7554/eLife.01730.002
    eLife Sciences 04/2014; 3:e01730. DOI:10.7554/eLife.01730 · 8.52 Impact Factor
Show more

Preview

Download
0 Downloads
Available from