Effects of Chronic Oral Rimonabant Administration on Energy Budgets of Diet-Induced Obese C57BL/6 Mice

Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
Obesity (Impact Factor: 4.39). 12/2011; 20(5):954-62. DOI: 10.1038/oby.2011.357
Source: PubMed

ABSTRACT The endocannabinoids have been recognized as an important system involved in the regulation of energy balance. Rimonabant (SR141716), a selective inverse agonist of cannabinoid receptor 1 (CB1), has been shown to cause weight loss. However, its suppressive impact on food intake is transient, indicating a likely additional effect on energy expenditure. To examine the effects of rimonabant on components of energy balance, we administered rimonabant or its vehicle to diet-induced obese (DIO) C57BL/6 mice once daily for 30 days, by oral gavage. Rimonabant induced a persistent weight reduction and a significant decrease in body fatness across all depots. In addition to transiently reduced food intake, rimonabant-treated mice exhibited decreased apparent energy absorption efficiency (AEAE), reduced metabolizable energy intake (MEI), and increased daily energy expenditure (DEE) on days 4-6 of treatment. However, these effects on the energy budget had disappeared by days 22-24 of treatment. No chronic group differences in resting metabolic rate (RMR) or respiratory quotient (RQ) (P > 0.05) were detected. Rimonabant treatment significantly increased daily physical activity (PA) levels both acutely and chronically. The increase in PA was attributed to elevated activity during the light phase but not during the dark phase. Taken together, these data suggested that rimonabant caused a negative energy balance by acting on both energy intake and expenditure. In the short term, the effect included both reduced intake and elevated PA but the chronic effect was only on increased PA expenditure.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: The melanin-concentrating hormone (MCH) is a centrally acting peptide implicated in the regulation of energy homeostasis and body weight, although its role in glucose homeostasis is uncertain. Our objective was to determine effects of MCHR1 antagonism on energy budgets and glucose homeostasis in mice. DESIGN AND METHODS: Effects of chronic oral administration of a specific MCHR1 antagonist (GW803430) on energy budgets and glucose homeostasis in diet-induced obese (DIO) C57BL/6J mice were examined. RESULTS: Oral administration of GW803430 for 30 days reduced food intake, body weight, and body fat. Circulating leptin and triglycerides were reduced but insulin and non-esterified fatty acids were unaffected. Despite weight loss there was no improvement in glucose homeostasis (insulin levels and intraperitoneal glucose tolerance tests). On day 4-6, mice receiving MCHR1 antagonist exhibited decreased metabolisable energy intake and increased daily energy expenditure. However these effects had disappeared by day 22-24. Physical activity during the dark phase was increased by MCHR1 antagonist treatment throughout the 30-day treatment. CONCLUSIONS: GW803430 produced a persistent anti-obesity effect due to both a decrease in energy intake and an increase in energy expenditure via physical activity but did not improve glucose homeostasis.
    Obesity 03/2014; 22(3). DOI:10.1002/oby.20418 · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have recently synthesized a new series of 4,5-Dihydrobenzo-oxa-cycloheptapyrazole derivatives with the aim to discover novel CB1 antagonist agents characterized by anti-obesity activity comparable to that of SR141716A but with reduced adverse effects such as anxiety and depression. Within the novel class, the CB1 antagonist 8-Chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-4,5-dihydrobenzo-1H-6-oxa-cyclohepta(1,2-c)pyrazole-3-carboxamide (NESS06SM) has been selected as lead compound. We found that NESS06SM is a CB1 neutral antagonist, characterized by poor blood brain barrier permeability. Moreover, NESS06SM chronic treatment determined both anti-obesity effect and cardiovascular risk factor improvement in C57BL/6N Diet Induced Obesity (DIO) mice fed with fat diet (FD mice). In fact, the mRNA gene expression in Central Nervous System (CNS) and peripheral tissues by real time PCR, showed a significant increase of orexigenic peptides and a decrease of anorexigenic peptides elicited by NESS06SM treatment, compared to control mice fed with the same diet. Moreover, in contrast to SR141716A treatment, the chronic administration of NESS06SM did not change mRNA expression of both monoaminergic transporters and neurotrophins highly related with anxiety and mood disorders. Our results suggest that NESS06SM reduces body weight and it can restore the disrupted expression profile of genes linked to the hunger-satiety circuit without altering monoaminergic transmission probably avoiding SR141716A side effects. Therefore the novel CB1 neutral antagonist could represent a useful candidate agent for the treatment of obesity and its metabolic complications.
    Pharmacological Research 06/2013; DOI:10.1016/j.phrs.2013.06.001 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The level of physical activity is inappropriately high in up to 80 % of the patients suffering of anorexia nervosa (AN), as a result of conscious efforts to lose weight, affect regulation and biological adaptive changes to starvation induced by hypothermia and neuroendocrine mechanisms. The purposes of this paper were to (1) assess the effect of dronabinol—a synthetic cannabinoid agonist—on physical activity in patients with chronic and stable AN, and to (2) unravel the role of leptin and cortisol in this process. Methods This prospective, randomised, double-blind, crossover study was conducted at a specialised care centre for eating disorders. Twenty-four adult women with AN of at least 5-year duration received either the dronabinol-placebo or placebo-dronabinol sequence. Physical activity was monitored during the fourth week of each intervention. Body weight, leptin and urinary free cortisol excretion were measured repeatedly during the trial. Changes in behavioural dimensions related to AN were assessed by Eating Disorder Inventory-2. Results The total duration of physical activity did not change, while its average intensity increased by 20 % (P = 0.01) during dronabinol therapy, resulting in an increased energy expenditure with 68.2 kcal/day (P = 0.01) above placebo. Conclusions This randomised, double-blind study revealed that cannabinoid agonist treatment was associated with a modest increase in physical activity in adult women with severe and longstanding AN. Additionally, we detected a strong relationship between the circulating levels of leptin and physical activity in these chronically undernourished patients.
    Eating and weight disorders: EWD 06/2014; 20(1). DOI:10.1007/s40519-014-0132-5 · 0.68 Impact Factor

Full-text (2 Sources)

Available from
Sep 19, 2014