Lack of a pharmacokinetic drug-drug interaction with venlafaxine extended-release/indinavir and desvenlafaxine extended-release/indinavir

Mercer University College of Pharmacy and Health Sciences, 3001 Mercer University Dr., Atlanta, GA 30341, USA.
European Journal of Clinical Pharmacology (Impact Factor: 2.97). 12/2011; 68(5):715-21. DOI: 10.1007/s00228-011-1180-7
Source: PubMed


To assess the effects of venlafaxine extended-release (XR) capsules and desvenlafaxine extended-release (XR) tablets upon indinavir pharmacokinetic properties when co-administrated to healthy volunteers.
This was an open-label, two-period, fixed-dose study conducted at the clinical research unit located on a university campus. Twenty-four healthy volunteers enrolled in the study (mean age 28.3 ± 8.0 years). Each subject received a single dose of indinavir 800 mg on day 1. Subsequently, subjects were then randomly assigned to either the venlafaxine XR group (N = 12) or the desvenlafaxine XR group (N = 12). Starting on day 2, venlafaxine XR was dosed at 37.5 mg/day for 4 days and increased to 75 mg/day for 6 days. Desvenlafaxine XR was dosed at 50 mg/day for 10 days. On day 12, indivanvir 800 mg was co-administered to both the venlafaxine XR and the desvenlafaxine XR groups. The pharmacokinetics of indinavir were determined both before and at the end of antidepressant dosing. Plasma indinavir, venlafaxine, and desvenlafaxine concentrations were assayed by high-performance liquid chromatography with ultra-violet (UV) detection. Indinavir pharmacokinetic parameters were calculated by noncompartmental analysis using validated computer software.
Venlafaxine XR and desvenlafaxine XR did not produce any significant changes in indinavir disposition. Both antidepressants were well tolerated by the subjects with only minor adverse side effects.
No pharmacokinetic drug-drug interaction was demonstrated between venlafaxine XR and indinavir or between desvenlafaxine XR and indinvair. The lack of interaction could be due to the venlafaxine and desvenlafaxine extended-release formulation.

Download full-text


Available from: Kathryn M Momary, Apr 13, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Venlafaxine (VEN) is an antidepressant agent widely used nowadays as an alternative to selective serotonin reuptake inhibitors (SSRIs), particularly for the treatment of SSRI-resistant depression. As the co-administration of antidepressant drugs with other medications is very common in clinical practice, the potential risk for pharmacokinetic and/or pharmacodynamic drug interactions that may be clinically meaningful increases. Bearing in mind that VEN has exhibited large variability in antidepressant response, besides the individual genetic background, several other factors may contribute to those variable clinical outcomes, such as the occurrence of significant drug-drug interactions. Indeed, the presence of drug interactions is possibly one of the major reasons for interindividual variability, and their anticipation should be considered in conjugation with other specific patients' characteristics to optimize the antidepressant therapy. Hence, a comprehensive overview of the pharmacokinetic- and pharmacodynamic-based drug interactions involving VEN is herein provided, particularly addressing their clinical relevance.
    06/2014; 30(1). DOI:10.1515/dmdi-2014-0011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To-date, there has been no effective chiral capillary electrophoresis-mass spectrometry (CE-MS) method reported for the simultaneous enantioseparation of the antidepressant drug, venlafaxine (VX) and its structurally-similar major metabolite, O-desmethylvenlafaxine (O-DVX). This is mainly due to the difficulty of identifying MS compatible chiral selector, which could provide both high enantioselectivity and sensitive MS detection. In this work, poly-sodium N-undecenoyl-L,L-leucylalaninate (poly-L,L-SULA) was employed as a chiral selector after screening several dipeptide polymeric chiral surfactants. Baseline separation of both O-DVX and VX enantiomers was achieved in 15min after optimizing the buffer pH, poly-L,L-SULA concentration, nebulizer pressure and separation voltage. Calibration curves in spiked plasma (recoveries higher than 80%) were linear over the concentration range 150-5000ng/mL for both VX and O-DVX. The limit of detection (LOD) was found to be as low as 30ng/mL and 21ng/mL for O-DVX and VX, respectively. This method was successfully applied to measure the plasma concentrations of human volunteers receiving VX or O-DVX orally when co-administered without and with indinivar therapy. The results suggest that micellar electrokinetic chromatography electrospray ionization-tandem mass spectrometry (MEKC-ESI-MS/MS) is an effective low cost alternative technique for the pharmacokinetics and pharmacodynamics studies of both O-DVX and VX enantiomers. The technique has potential to identify drug-drug interaction involving VX and O-DVX enantiomers while administering indinivar therapy.
    Journal of Chromatography A 10/2015; DOI:10.1016/j.chroma.2015.09.088 · 4.17 Impact Factor