Conditional ablation of the Notch2 receptor in the ocular lens

Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Developmental Biology (Impact Factor: 3.64). 11/2011; 362(2):219-29. DOI: 10.1016/j.ydbio.2011.11.011
Source: PubMed

ABSTRACT Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors have not been investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, denucleation defects, and cataracts. Notch2 mutants also had persistent lens stalks as early as E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed that upon loss of Notch2, there were elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2), and Trp63 (p63) that negatively regulates Wnt signaling, plus down-regulation of Cdh1 (E-Cadherin). Removal of Notch2 also resulted in an increased proportion of fiber cells, as was found in Rbpj and Jag1 conditional mutant lenses. However, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. We found that Notch2 normally blocks lens progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.

Download full-text


Available from: Chunqiao Liu, Sep 22, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis. © 2014. Published by The Company of Biologists Ltd.
    Development 12/2014; 141(23):4432-4447. DOI:10.1242/dev.107953 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Closure of an epithelium opening is a critical morphogenetic event for development. An excellent example for this process is the transient closure of embryonic eyelid. Eyelid closure requires shape change and migration of epithelial cells at the tip of the developing eyelids, and is dictated by numerous signaling pathways. Here we evaluated gene expression in epithelial cells isolated from the tip (leading edge, LE) and inner surface epithelium (IE) of the eyelid from E15.5 mouse fetuses by laser capture microdissection (LCM). We showed that the LE and IE cells are different at E15.5, such that IE had higher expression of muscle specific genes, while LE acquired epithelium identities. Despite their distinct destinies, these cells were overall similar in expression of signaling components for the "eyelid closure pathways". However, while the LE cells had more abundant expression of Fgfr2, Erbb2, Shh, Ptch1 and 2, Smo and Gli2, and Jag1 and Notch1, the IE cells had more abundant expression of Bmp5 and Bmpr1a. In addition, the LE cells had more abundant expression of adenomatosis polyposis coli down-regulated 1 (Apcdd1), but the IE cells had high expression of Dkk2. Our results suggest that the functionally distinct LE and IE cells have also differential expression of signaling molecules that may contribute to the cell-specific responses to morphogenetic signals. The expression pattern suggests that the EGF, Shh and NOTCH pathways are preferentially active in LE cells, the BMP pathways are effective in IE cells, and the Wnt pathway may be repressed in LE and IE cells via different mechanisms.
    PLoS ONE 02/2014; 9(2):e87038. DOI:10.1371/journal.pone.0087038 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc) is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1) proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.
    PLoS ONE 02/2014; 9(2):e87182. DOI:10.1371/journal.pone.0087182 · 3.53 Impact Factor