Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes.

Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia.
Free Radical Biology and Medicine (Impact Factor: 5.27). 11/2011; 52(3):716-23. DOI: 10.1016/j.freeradbiomed.2011.11.017
Source: PubMed

ABSTRACT Cardiovascular benefits of ubiquinone have been previously demonstrated, and we administered it as a novel therapy in an experimental model of type 2 diabetic nephropathy. db/db and dbH mice were followed for 10 weeks, after randomization to receive either vehicle or ubiquinone (CoQ10; 10mg/kg/day) orally. db/db mice had elevated urinary albumin excretion rates and albumin:creatinine ratio, not seen in db/db CoQ10-treated mice. Renal cortices from db/db mice had lower total and oxidized CoQ10 content, compared with dbH mice. Mitochondria from db/db mice also contained less oxidized CoQ10(ubiquinone) compared with dbH mice. Diabetes-induced increases in total renal collagen but not glomerulosclerosis were significantly decreased with CoQ10 therapy. Mitochondrial superoxide and ATP production via complex II in the renal cortex were increased in db/db mice, with ATP normalized by CoQ10. However, excess renal mitochondrial hydrogen peroxide production and increased mitochondrial membrane potential seen in db/db mice were attenuated with CoQ10. Renal superoxide dismutase activity was also lower in db/db mice compared with dbH mice. Our results suggest that a deficiency in mitochondrial oxidized CoQ10 (ubiquinone) may be a likely precipitating factor for diabetic nephropathy. Therefore CoQ10 supplementation may be renoprotective in type 2 diabetes, via preservation of mitochondrial function.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a nutritional supplement, coenzyme Q10 (CoQ10) was tested previously in several models of diabetes and/or insulin resistance (IR); however, its exact mechanisms have not been profoundly explicated. Hence, the objective of this work is to verify some of the possible mechanisms that underlie its therapeutic efficacy. Moreover, the study aimed to assess the potential modulatory effect of CoQ10 on the antidiabetic action of glimebiride. An insulin resistance/type 2 diabetic model was adopted, in which rats were fed high fat/high fructose diet (HFFD) for 6 weeks followed by a single sub-diabetogenic dose of streptozotocin (35 mg/kg, i.p.). At the end of the 7(th) week animals were treated with CoQ10 (20 mg/kg, p.o) and/or glimebiride (0.5 mg/kg, p.o) for 2 weeks. CoQ10 alone opposed the HFFD effect and increased the hepatic/muscular content/activity of tyrosine kinase (TK), phosphatidylinositol kinase (PI3K), and adiponectin receptors. Conversely, it decreased the content/activity of insulin receptor isoforms, myeloperoxidase and glucose transporters (GLUT4; 2). Besides, it lowered significantly the serum levels of glucose, insulin, fructosamine and HOMA index, improved the serum lipid panel and elevated the levels of glutathione, sRAGE and adiponectin. On the other hand, CoQ10 lowered the serum levels of malondialdehyde, visfatin, ALT and AST. Surprisingly, CoQ10 effect surpassed that of glimepiride in almost all the assessed parameters, except for glucose, fructosamine, TK, PI3K, and GLUT4. Combining CoQ10 with glimepiride enhanced the effect of the latter on the aforementioned parameters. These results provided a new insight into the possible mechanisms by which CoQ10 improves insulin sensitivity and adjusts type 2 diabetic disorder. These mechanisms involve modulation of insulin and adiponectin receptors, as well as TK, PI3K, glucose transporters, besides improving lipid profile, redox system, sRAGE, and adipocytokines. The study also points to the potential positive effect of CoQ10 as an adds- on to conventional antidiabetic therapies.
    PLoS ONE 02/2014; 9(2):e89169. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are important for preventing adverse cardiovascular events not only in patients with a high risk of vascular disease but also in those with a low risk, by reducing the levels of low-density lipoprotein cholesterol. Statin is associated with deteriorating glucose homeostasis and an increased risk of diabetes mellitus. Moreover, these off-target effects are dose-dependent; it has also been suggested that renal insult can be caused dose-dependently by statin treatment, in contrast to previous studies showing a renoprotective effect. The 2013 American College of Cardiology/American Heart Association guidelines recommend the use of high-intensity statin therapy, and extend its use to more people at risk of vascular diseases. However, a European committee has expressed concerns about the potential side effects of using statins in a large fraction of the population for extended periods. This is true of Asian people, for whom the disease burden from cardiovascular disorders is not as great as among Western ethnic groups. There are still many unanswered questions on how to balance the cardiovascular benefits with the potential renometabolic risks of statins. Therefore, genetic or pharmacogenetic approaches are needed to define who is more vulnerable to developing diabetes mellitus or acute kidney injury. In particular, more information is required regarding the metabolism of statins, and their off-target or unknown actions and overall impact. These different renometabolic effects of statins should help in formulating optimal therapeutic strategies for patients for reducing overall morbidity and mortality and not just those associated with cardiovascular diseases.
    Atherosclerosis 06/2014; 235(2):644-648. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies. This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit
    British Journal of Pharmacology 04/2014; 171(8):1917-42. · 5.07 Impact Factor