SitePainter: A tool for exploring biogeographical patterns

Department of Computer Science, University of Colorado at Boulder and Howard Hughes Medical Institute, Boulder, CO 80309, USA.
Bioinformatics (Impact Factor: 4.98). 12/2011; 28(3):436-8. DOI: 10.1093/bioinformatics/btr685
Source: PubMed


As microbial ecologists take advantage of high-throughput analytical techniques to describe microbial communities across ever-increasing numbers of samples, the need for new analysis tools that reveal the intrinsic spatial patterns and structures of these populations is crucial. Here we present SitePainter, an interactive graphical tool that allows investigators to create or upload pictures of their study site, load diversity analyses data and display both diversity and taxonomy results in a spatial context. Features of SitePainter include: visualizing α -diversity, using taxonomic summaries; visualizing β -diversity, using results from multidimensional scaling methods; and animating relationships among microbial taxa or pathways overtime. SitePainter thus increases the visual power and ability to explore spatially explicit studies.
Supplementary information: Supplementary data are available at Bioinformatics online.

21 Reads
  • Source
    • "Pearson product-moment correlation analyses were performed using R software. Environmental surveillance heatmaps were generated based on taxonomic abundance tables generated in QIIME and visualized using SitePainter 1.1 (Gonzalez et al., 2012). Bacterial OTU source-sink relationships were tested using SourceTracker (Knights et al., 2010) with 1000 burn-ins, 25 restarts, and rarefaction to 100 OTUs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.
    eLife Sciences 03/2015; 4(4). DOI:10.7554/eLife.04634 · 9.32 Impact Factor
  • Source
    • "Environmental surveillance heatmaps were generated based on taxonomic abundance tables generated in QIIME and visualized using SitePainter 1.1 [45]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.
    PLoS ONE 06/2013; 8(6):e66437. DOI:10.1371/journal.pone.0066437 · 3.23 Impact Factor
  • Source
    • "The sites are colored by abundance, where red represents high abundance, blue represents low abundance and purple represents medium range. The graphic was generated using 16S sequences with SitePainter [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. Results DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes. Conclusions Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas. Dominant fungal taxa that could be identified to genus with 18S amplicons included Hypocrea, Aureobasidium and Cryptococcus. No definitive presence of Salmonella could be confirmed in any of the plant samples, although 16S sequences suggested that closely related genera were present on leaves, fruits and roots.
    BMC Microbiology 05/2013; 13(1):114. DOI:10.1186/1471-2180-13-114 · 2.73 Impact Factor
Show more


21 Reads
Available from