Article

β - but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
EMBO Molecular Medicine (Impact Factor: 8.25). 03/2012; 4(3):171-9. DOI: 10.1002/emmm.201100195
Source: PubMed

ABSTRACT A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ.

0 Bookmarks
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clues to Alzheimer disease (AD) pathogenesis come from a variety of different sources including studies of clinical and neuropathological features, biomarkers, genomics and animal and cellular models. An important role for amyloid precursor protein (APP) and its processing has emerged and considerable interest has been directed at the hypothesis that Aβ peptides induce changes central to pathogenesis. Accordingly, molecules that reduce the levels of Aβ peptides have been discovered such as γ-secretase inhibitors (GSIs) and modulators (GSMs). GSIs and GSMs reduce Aβ levels through very different mechanisms. However, GSIs, but not GSMs, markedly increase the levels of APP CTFs that are increasingly viewed as disrupting neuronal function. Here, we evaluated the effects of GSIs and GSMs on a number of neuronal phenotypes possibly relevant to their use in treatment of AD. We report that GSI disrupted retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF), suppressed BDNF-induced downstream signaling pathways and induced changes in the distribution within neuronal processes of mitochondria and synaptic vesicles. In contrast, treatment with a novel class of GSMs had no significant effect on these measures. Since knockdown of APP by specific siRNA prevented GSI-induced changes in BDNF axonal trafficking and signaling, we concluded that GSI effects on APP processing were responsible, at least in part, for BDNF trafficking and signaling deficits. Our findings argue that with respect to anti-amyloid treatments, even an APP-specific GSI may have deleterious effects and GSMs may serve as a better alternative.
    PLoS ONE 01/2015; 10(2):e0118379. DOI:10.1371/journal.pone.0118379 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly today. One of the earliest symptoms of AD is olfactory dysfunction. The present study investigated the effects of amyloid β precursor protein (AβPP) metabolites, including amyloid-β (Aβ) and AβPP C-terminal fragments (CTF), on olfactory processing in the lateral entorhinal cortex (LEC) using the Tg2576 mouse model of human AβPP over-expression. The entorhinal cortex is an early target of AD related neuropathology, and the LEC plays an important role in fine odor discrimination and memory. Cohorts of transgenic and age-matched wild-type (WT) mice at 3, 6, and 16months of age (MO) were anesthetized and acute, single-unit electrophysiology was performed in the LEC. Results showed that Tg2576 exhibited early LEC hyperactivity at 3 and 6 MO compared to WT mice in both local field potential and single-unit spontaneous activity. However, LEC single-unit odor responses and odor receptive fields showed no detectable difference compared to WT at any age. Finally, the very early emergence of olfactory system hyper-excitability corresponded not to detectable Aβ deposition in the olfactory system, but rather to high levels of intracellular AβPP-CTF and soluble Aβ in the anterior piriform cortex (aPCX), a major afferent input to the LEC, by 3 MO. The present results add to the growing evidence of AβPP-related hyper-excitability, and further implicate both soluble Aβ and non-Aβ AβPP metabolites in its early emergence. Copyright © 2014. Published by Elsevier Inc.
    Experimental Neurology 12/2014; 264. DOI:10.1016/j.expneurol.2014.12.008 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease increases the risk for late-onset seizures and neuronal network abnormalities. An elevated co-occurrence of Alzheimer's disease and seizures has been established in the more prevalent sporadic form of Alzheimer's disease. Recent evidence suggests that nonconvulsive network abnormalities, including seizures and other electroencephalographic abnormalities, may be more commonly found in patients than previously thought. Patients with familial Alzheimer's disease are at an even greater risk for seizures, which have been found in patients with mutations in PSEN1, PSEN2, or APP, as well as with APP duplication. This review also provides an overview of seizure and electroencephalography studies in Alzheimer's disease mouse models. The amyloid-β peptide has been identified as a possible link between Alzheimer's disease and seizures, and while amyloid-β is known to affect neuronal activity, the full-length amyloid precursor protein (APP) and other APP cleavage products may be important for the development and maintenance of cortical network hyperexcitability. Nonconvulsive epileptiform activity, such as seizures or network abnormalities that are shorter in duration but may occur with higher frequency, may contribute to cognitive impairments characteristic of Alzheimer's disease, such as amnestic wandering. Finally, the review discusses recent studies using antiepileptic drugs to rescue cognitive deficits in Alzheimer's disease mouse models and human patients. Understanding the mechanistic link between epileptiform activity and Alzheimer's disease is a research area of growing interest. Further understanding of the connection between neuronal hyperexcitability and Alzheimer's as well as the potential role of epileptiform activity in the progression of Alzheimer's disease will be beneficial for improving treatment strategies. Copyright © 2014. Published by Elsevier Ltd.
    Neuroscience 12/2014; 286. DOI:10.1016/j.neuroscience.2014.11.051 · 3.33 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
May 22, 2014