Article

Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.

Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Journal of Tissue Engineering and Regenerative Medicine (Impact Factor: 4.43). 12/2011; DOI: 10.1002/term.525
Source: PubMed

ABSTRACT Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. Copyright © 2011 John Wiley & Sons, Ltd.

0 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of fluid flow on cancer progression is currently not well understood, highlighting the need for perfused tumor models to close this gap in knowledge. Enabling biological processes at the cellular level to be modeled with high spatiotemporal control, microfluidic tumor models have demonstrated applicability as platforms to study cell-cell interactions, effect of interstitial flow on tumor migration and the role of vascular barrier function. To account for the multi-scale nature of cancer growth and invasion, macroscale models are also necessary. The consideration of fluid dynamics within tumor models at both the micro- and macroscopic levels may greatly improve our ability to more fully mimic the tumor microenvironment.
    Current opinion in chemical engineering. 02/2014; 3:112-117.
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is generally agreed that engineered cardiovascular tissues require cellular interactions with the local milieu. Within the microenvironment, the extracellular matrix (ECM) is an important support structure that provides dynamic signaling cues in part through its chemical, physical, and mechanical properties. In response to ECM factors, cells activate biochemical and mechanotransduction pathways that modulate their survival, growth, migration, differentiation, and function. This Review describes the role of ECM chemical composition, spatial patterning, and mechanical stimulation in the specification of cardiovascular lineages, with a focus on stem cell differentiation, direct transdifferentiation, and endothelial-to-mesenchymal transition. The translational application of ECMs will be discussed in the context of cardiovascular tissue engineering and regenerative medicine.
    Advanced Healthcare Materials 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is significant interest within the tissue engineering and pharmaceutical industries to create 3D microphysiological systems of human organ function. The interest stems from a growing concern that animal models and simple 2D culture systems cannot replicate essential features of human physiology that are critical to predict drug response, or simply to develop new therapeutic strategies to repair or replace damaged organs. Central to human organ function is a microcirculation that not only enhances the rate of nutrient and waste transport by convection, but also provides essential additional physiological functions that can be specific to each organ. This review highlights progress in the creation of in vitro functional microvessel networks, and emphasizes organ-specific functional and structural characteristics that should be considered in the future mimicry of four organ systems that are of primary interest: lung, brain, liver, and muscle (skeletal and cardiac).
    Current opinion in chemical engineering. 02/2014; 3:103-111.

Full-text

View
33 Downloads
Available from
Jun 10, 2014