Article

The role of neuronavigation in intracranial endoscopic procedures

Department of Neurosurgery, University of Aachen, Aachen, Germany.
Neurosurgical Review (Impact Factor: 1.86). 12/2011; 35(3):351-8. DOI: 10.1007/s10143-011-0369-7
Source: PubMed

ABSTRACT In occlusive hydrocephalus, cysts and some ventricular tumours, neuroendoscopy has replaced shunt operations and microsurgery. There is an ongoing discussion if neuronavigation should routinely accompany neuroendoscopy or if its use should be limited to selected cases. In this prospective clinical series, the role of neuronavigation during intracranial endoscopic procedures was investigated. In 126 consecutive endoscopic procedures (endoscopic third ventriculostomy, ETV, n = 65; tumour biopsy/resection, n = 36; non-tumourous cyst fenestration, n = 23; abscess aspiration and hematoma removal, n = 1 each), performed in 121 patients, neuronavigation was made available. After operation and videotape review, the surgeon had to categorize the role of neuronavigation: not beneficial; beneficial, but not essential; essential. Overall, neuronavigation was of value in more than 50% of the operations, but its value depended on the type of the procedure. Neuronavigation was beneficial, but not essential in 16 ETVs (24.6%), 19 tumour biopsies/resections (52.7%) and 14 cyst fenestrations (60.9%). Neuronavigation was essential in 1 ETV (2%), 11 tumour biopsies/resections (30.6%) and 8 cyst fenestrations (34.8%). Neuronavigation was not needed/not used in 48 ETVs (73.9%), 6 endoscopic tumour operations (16.7%) and 1 cyst fenestration (4.3%). For ETV, neuronavigation mostly is not required. In the majority of the remaining endoscopic procedures, however, neuronavigation is at least beneficial. This finding suggests integrating neuronavigation into the operative routine in endoscopic tumour operations and cyst fenestrations.

0 Followers
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern glioma surgery has evolved around the central tenet of safely maximizing resection. Recent surgical adjuncts have focused on increasing the maximum extent of resection while minimizing risk to functional brain. Technologies such as cortical and subcortical stimulation mapping, intraoperative magnetic resonance imaging, functional neuronavigation, navigable intraoperative ultrasound, neuroendoscopy, and fluorescence-guided resection have been developed to augment the identification of tumor while preserving brain anatomy and function. However, whether these technologies offer additional long-term benefits to glioma patients remains to be determined. Here we review advances over the past decade in operative technologies that have offered the most promising benefits for glioblastoma patients.
    Journal of Neuro-Oncology 06/2014; 119(3). DOI:10.1007/s11060-014-1493-3 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. Though traditional microsurgical techniques are the gold standard for intraventricular tumor resection, the morbidity and invasiveness of microsurgical approaches to the ventricular system have galvanized interest in neuroendoscopic resection. We present a systematic review of the literature to provide a better understanding of the virtues and limitations of endoscopic tumor resection. Materials and Methods. 40 articles describing 668 endoscopic tumor resections were selected from the Pubmed database and reviewed. Results. Complete or near-complete resection was achieved in 75.0% of the patients. 9.9% of resected tumors recurred during the follow-up period, and procedure-related complications occurred in 20.8% of the procedures. Tumor size ≤ 2cm (P = 0.00146), the presence of a cystic tumor component (P < 0.0001), and the use of navigation or stereotactic tools during the procedure (P = 0.0003) were each independently associated with a greater likelihood of complete or near-complete tumor resection. Additionally, the complication rate was significantly higher for noncystic masses than for cystic ones (P < 0.0001). Discussion. Neuroendoscopic outcomes for intraventricular tumor resection are significantly better when performed on small, cystic tumors and when neural navigation or stereotaxy is used. Conclusion. Neuroendoscopic resection appears to be a safe and reliable treatment option for patients with intraventricular tumors of a particular morphology.
    09/2013; 2013:898753. DOI:10.1155/2013/898753
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Cranial surgical navigation is most commonly performed by registration with fiducial markers, optic tracking, and intermittent pointer-based application. OBJECTIVE: To assess the accuracy and applicability of an advanced cranial navigation setup. METHODS: Continuous electromagnetic instrument navigation was used in 136 neurosurgical cases with a standard navigation system. A phantom head in an intraoperative magnetic resonance imaging environment was used to compare the accuracy of the advanced and standard navigation setups. RESULTS: A navigated suction device was used in 71 cases of intracranial tumor surgery and 46 cases of endoscopic transsphenoidal surgery. The ventriculoscope was navigated in 6 cases and the stereotactic biopsy needle in 4 cases. Electromagnetic tracking was used for catheter placement in 9 cases. The learning curve comprised 6 of the 136 cases during the first month of application. No significant difference was observed at the intracranial target points between the standard navigation setup using optic tracking, fiducial marker registration, and pointer and the advanced navigation setup with electromagnetic tracking, surface-based registration, and navigation of a field-detecting stylet in a standard metal suction tube when performed outside the 5-G line of the 3.0-T intraoperative magnetic resonance imaging. CONCLUSION: Continuous instrument navigation is the prerequisite for seamless integration of navigation systems into the neurosurgical operating workflow. Our data confirm that the application of preoperative imaging, surface-merge registration, and continuous electromagnetic tip-tracked instrument navigation may provide such integration without a significant reduction in accuracy compared with standard navigation. ABBREVIATIONS: EM, electromagnetic iMRI, intraoperative magnetic resonance imaging RMSE, root mean square error
    Neurosurgery 01/2013; 72:A43-A53. DOI:10.1227/NEU.0b013e3182750c03 · 3.03 Impact Factor

Full-text (3 Sources)

Download
0 Downloads
Available from
Feb 19, 2015