Article

Interferon Regulatory Factor 3 Inhibits Astrocyte Inflammatory Gene Expression Through Suppression of the Proinflammatory miR-155 and miR-155

Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
Glia (Impact Factor: 5.47). 12/2011; 59(12):1911-22. DOI: 10.1002/glia.21233
Source: PubMed

ABSTRACT Astrocytes, together with microglia and macrophages, participate in innate inflammatory responses in the CNS. Although inflammatory mediators such as interferons generated by astrocytes may be critical in the defense of the CNS, sustained unopposed cytokine signaling could result in harmful consequences. Interferon regulatory factor 3 (IRF3) is a transcription factor required for IFNβ production and antiviral immunity. Most cells express low levels of IRF3 protein, and the transcriptional mechanism that upregulates IRF3 expression is not known. In this study, we explored the consequence of adenovirus-mediated IRF3 gene transfer (Ad-IRF3) in primary human astrocytes. We show that IRF3 transgene expression suppresses proinflammatory cytokine gene expression upon challenge with IL-1/IFNγ and alters astrocyte activation phenotype from a proinflammatory to an anti-inflammatory one, akin to an M1-M2 switch in macrophages. This was accompanied by the rescue of neurons from cytokine-induced death in glial-neuronal co-cultures. Furthermore, Ad-IRF3 suppressed the expression of microRNA-155 and its star-form partner miR-155*, immunoregulatory miRNAs highly expressed in multiple sclerosis lesions. Astrocyte miR-155/miR155* were induced by cytokines and TLR ligands with a distinct hierarchy and involved in proinflammatory cytokine gene induction by targeting suppressor of cytokine signaling 1, a negative regulator of cytokine signaling and potentially other factors. Our results demonstrate a novel proinflammatory role for miR-155/miR-155* in human astrocytes and suggest that IRF3 can suppress neuroinflammation through regulating immunomodulatory miRNA expression. © 2011 Wiley-Liss, Inc.

0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipocalin-2 (LCN2) is an acute phase protein with multiple functions that has garnered a great deal of interest over the last decade. However, its precise role in the pathophysiology of the central nervous system (CNS) remains to be outlined. Emerging evidence indicates that LCN2 is synthesized and secreted as an inducible factor from activated microglia, reactive astrocytes, neurons, and endothelial cells in response to inflammatory, infectious, or injurious insults. More recently, it has been recognized as a modulatory factor for diverse cellular phenotypes in the CNS, such as cell death, survival, morphology, migration, invasion, differentiation, and functional polarization. LCN2 induces chemokine production in the CNS in response to inflammatory challenges, and actively participates in the innate immune response, cellular influx of iron, and regulation of neuroinflammation and neurodegeneration. LCN2 also modulates several biobehavioral responses including pain hypersensitivity, cognitive functions, emotional behaviors, depression, neuronal excitability, and anxiety. This review covers recent advances in our knowledge regarding functional roles of LCN2 in the CNS, and discusses how LCN2 acts as an autocrine mediator of astrocytosis, a chemokine inducer, and a modulator of various cellular phenotypes in the CNS. We finally explore the possibilities and challenges of employing LCN2 as a signature of several CNS anomalies.KeywordsLipocalin-2Acute phase proteinNeuroinflammationMicrogliaAstrocyteCentral nervous systemChemokineFunctional polarizationBiomarkerTherapeutic targetBiobehavior
    Neuroscience & Biobehavioral Reviews 12/2014; 49. DOI:10.1016/j.neubiorev.2014.12.006 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic neuropathic pain is an unfavourable pathological pain characterised by allodynia and hyperalgesia which has brought considerable trouble to people’s physical and mental health, but effective therapeutics are still lacking. MicroRNAs (miRNAs) have been widely studied in the development of neuropathic pain and neuronal inflammation. Among various miRNAs, miR-155 has been widely studied. It is intensively involved in regulating inflammation-associated diseases. However, the role of miR-155 in regulating neuropathic pain development is poorly understood. In the present study, we aimed to investigate whether miR-155 is associated with neuropathic pain and delineate the underlying mechanism. Using a neuropathic pain model of chronic constriction injury (CCI), miR-155 expression levels were markedly increased in the spinal cord. Inhibition of miR-155 significantly attenuated mechanical allodynia, thermal hyperalgesia and proinflammatory cytokine expression. We also demonstrated that miR-155 directly bound with the 3′-untranslated region of the suppressor of cytokine signalling 1 (SOCS1). The expression of SOCS1 significantly decreased in the CCI rat model, but this effect could be reversed by miR-155 inhibition. Furthermore, knockdown of SOCS1 abrogated the inhibitory effects of miR-155 inhibition on neuropathic development and neuronal inflammation. Finally, we demonstrated that inhibition of miR-155 resulted in the suppression of nuclear factor-κB and p38 mitogen-activated protein kinase activation by mediating SOCS1. Our data demonstrate the critical role of miR-155 in regulating neuropathic pain through SOCS1, and suggest that miR-155 may be an important and potential target in preventing neuropathic pain development.
    Neurochemical Research 12/2014; DOI:10.1007/s11064-014-1500-2 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of microglia/macrophages following cerebral ischemia may be beneficial or detrimental for the survival of brain cells, an ambiguity in effects that has been explained by findings that ischemia can induce transformation of resting monocytes/macrophages into two different inflammation-related phenotypes, termed M1 and M2. The extent to which this differentiation depends on paracrine signaling from other brain cells is not clear. This study explored if oxygen glucose deprivation (OGD) can trigger expression of phenotype-specific markers in rat microglia/macrophages in primary culture, in absence/low abundance of other brain cells. Time pattern of these changes was assessed and compared to time-pattern that has been revealed in vivo previously. Effects of phenotype-specific cytokines on viability of astrocytes in primary culture during anoxia were also explored. Primary cultures of rat microglia/macrophages were exposed to 2h OGD and then incubated further under normal conditions; this was considered as a recovery period. Expression of mRNA for specific markers and secretion of phenotype-specific cytokines were explored at different time points by real time PCR and ELISA, respectively. Effects of cytokines that were secreted by microglia in primary culture after OGD on viability of astrocytes were determined. Expression and secretion of M2 phenotype-specific markers and/or cytokines after OGD increased early after OGD and then decreased in the later stages of the recovery period. Expression and secretion of M1 phenotype-specific markers and cytokines did not show a common time pattern, but there was a tendency for an increase during the recovery period. All M1 phenotype-specific and two out of the three tested M2 phenotype-specific cytokines revealed protective effects on astrocytes during near-anoxia by a marked reduction of apoptosis. Time-pattern of expression/secretion of phenotype-specific markers suggested that polarization of the brain microglia/macrophages in vitro to M2 and M1 phenotypes were largely independent and likely dependent on signaling from other brain cells, respectively. Time-pattern of polarization to the M2 phenotype partially resembled time-pattern that has been seen in vivo. Effects of M1 phenotype-specific cytokines on primary culture of astrocytes were protective, thus largely opposite to effects that have been observed in vivo.
    02/2015; 12. DOI:10.1186/s12987-015-0002-1

Full-text (2 Sources)

Download
18 Downloads
Available from
Jun 10, 2014