Article

Targeted Loss of GHR Signaling in Mouse Skeletal Muscle Protects Against High-Fat Diet–Induced Metabolic Deterioration

Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA.
Diabetes (Impact Factor: 8.47). 01/2012; 61(1):94-103. DOI: 10.2337/db11-0814
Source: PubMed

ABSTRACT Growth hormone (GH) exerts diverse tissue-specific metabolic effects that are not revealed by global alteration of GH action. To study the direct metabolic effects of GH in the muscle, we specifically inactivated the growth hormone receptor (ghr) gene in postnatal mouse skeletal muscle using the Cre/loxP system (mGHRKO model). The metabolic state of the mGHRKO mice was characterized under lean and obese states. High-fat diet feeding in the mGHRKO mice was associated with reduced adiposity, improved insulin sensitivity, lower systemic inflammation, decreased muscle and hepatic triglyceride content, and greater energy expenditure compared with control mice. The obese mGHRKO mice also had an increased respiratory exchange ratio, suggesting increased carbohydrate utilization. GH-regulated suppressor of cytokine signaling-2 (socs2) expression was decreased in obese mGHRKO mice. Interestingly, muscles of both lean and obese mGHRKO mice demonstrated a higher interleukin-15 and lower myostatin expression relative to controls, indicating a possible mechanism whereby GHR signaling in muscle could affect liver and adipose tissue function. Thus, our study implicates skeletal muscle GHR signaling in mediating insulin resistance in obesity and, more importantly, reveals a novel role of muscle GHR signaling in facilitating cross-talk between muscle and other metabolic tissues.

Download full-text

Full-text

Available from: Gary J Schwartz, Aug 03, 2015
0 Followers
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth hormone (GH) stimulates whole-body lipid oxidation, but its regulation of muscle lipid oxidation is not clearly defined. Mice with a skeletal muscle-specific knockout of the GH receptor (mGHRKO model) are protected from high fat diet (HFD)-induced insulin resistance and display increased whole-body carbohydrate utilization. In this study we used the mGRHKO mice to investigate the role of muscle GHR signaling on lipid oxidation under regular chow (RC)- and HFD- fed conditions, and in response to fasting. Expression of lipid oxidation genes was analyzed by real-time PCR in the muscles of RC- and HFD- fed mice, and after 24 h fasting in the HFD-fed mice. Expression of lipid oxidation genes was lower in the muscles of the mGHRKO mice relative to the controls, irrespective of diet. However, in response to 24 h fasting, the HFD-fed mGHRKO mice displayed up-regulation of lipid oxidation genes similar to the fasted controls. When subjected to treadmill running challenge, the HFD-fed mGHRKO mice demonstrated increased whole-body lipid utilization. Additionally, under fasted conditions, the adipose tissue of the mGHRKO mice displayed increased lipolysis as compared to both the fed mGHRKO as well as the fasted control mice. Our data show that muscle GHR signaling regulates basal lipid oxidation, but not the induction of lipid oxidation in response to fasting. We further demonstrate that muscle GHR signaling is involved in muscle-adipose tissue cross-talk; however the mechanisms mediating this remain to be elucidated.
    PLoS ONE 09/2012; 7(9):e44777. DOI:10.1371/journal.pone.0044777 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GH receptor (GHR) gene-disrupted mice (GHR-/-) have provided countless discoveries as to the numerous actions of GH. Many of these discoveries highlight the importance of GH in adipose tissue. For example GHR-/- mice are insulin sensitive yet obese with preferential enlargement of the sc adipose depot. GHR-/- mice also have elevated levels of leptin, resistin, and adiponectin, compared with controls leading some to suggest that GH may negatively regulate certain adipokines. To help clarify the role that GH exerts specifically on adipose tissue in vivo, we selectively disrupted GHR in adipose tissue to produce Fat GHR Knockout (FaGHRKO) mice. Surprisingly, FaGHRKOs shared only a few characteristics with global GHR-/- mice. Like the GHR-/- mice, FaGHRKO mice are obese with increased total body fat and increased adipocyte size. However, FaGHRKO mice have increases in all adipose depots with no improvements in measures of glucose homeostasis. Furthermore, resistin and adiponectin levels in FaGHRKO mice are similar to controls (or slightly decreased) unlike the increased levels found in GHR-/- mice, suggesting that GH does not regulate these adipokines directly in adipose tissue in vivo. Other features of FaGHRKO mice include decreased levels of adipsin, a near-normal GH/IGF-1 axis, and minimal changes to a large assortment of circulating factors that were measured such as IGF-binding proteins. In conclusion, specific removal of GHR in adipose tissue is sufficient to increase adipose tissue and decrease circulating adipsin. However, removal of GHR in adipose tissue alone is not sufficient to increase levels of resistin or adiponectin and does not alter glucose metabolism.
    Molecular Endocrinology 01/2013; 27(3). DOI:10.1210/me.2012-1330 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated GH action on macrophage (MΦ) by creating a MΦ-specific GH receptor null mouse model (MacGHR KO). On a normal diet (10% fat), MacGHR KO and littermate controls exhibited similar growth profiles and glucose excursions on intraperitoneal glucose (ipGTT) and insulin tolerance (ITT) tests. However, when challenged with high fat diet (HFD, 45% fat) for 18 weeks, MacGHR KO mice exhibited impaired ipGTT and ITT compared to controls. In MacGHR KO, adipose-tissue (AT) MΦ abundance was increased with skewing towards M1 polarization. Expression of pro-inflammatory cytokines (IL1β, TNF-α, IL6, and osteopontin [OPN]) were increased in MacGHR KO AT stromal vascular fraction (SVF). In MacGHR KO AT, crown-like-structures were increased with decreased insulin-dependent Akt phosphorylation. The abundance of phosphorylated NF-kB and of OPN was increased in SVF and bone-marrow derived MΦ in MacGHR KO. GH, acting via an NF-kB site in the distal OPN promoter, inhibited the OPN promoter. Thus in diet-induced obesity (DIO), lack of GH action on the MΦ exerts an unexpected deleterious effect on glucose homeostasis by accentuating AT inflammation and NF-kB dependent activation of OPN expression. These novel results in mice support the possibility that administration of GH could have salutary effects on DIO-associated chronic inflammation and insulin resistance in humans.
    Journal of Biological Chemistry 04/2013; 288(22). DOI:10.1074/jbc.M113.460212 · 4.57 Impact Factor
Show more