Different outcomes for omega-3 heart trials: why?

aDepartment of Pediatrics, Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA bHuman Development and Health Academic Unit, Institute of Human Nutrition, Faculty of Medicine, University of Southampton, Southampton, UK.
Current opinion in clinical nutrition and metabolic care 12/2011; 15(2):97-8. DOI: 10.1097/MCO.0b013e32834ec9e5
Source: PubMed
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. Methods and results Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. Conclusion Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers.
    Atherosclerosis 06/2014; 234(2). DOI:10.1016/j.atherosclerosis.2014.03.022 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipids are essential for plant and animal development, growth and nutrition and play critical roles in health and reproduction. The dramatic increase in the human population has put increasing pressure on human food sources, especially of those sources of food which contain adequate levels of polyunsaturated fatty acids (PUFAs) and more importantly, sources of food which have favorable ratios of the n-3 (18-carbon, α-linolenic acid, ALA) to n-6 (18-carbon linoleic acid, LA) PUFAs. Recent studies have demonstrated the beneficial effects of the n-3 PUFAs in diets as well as potentially negative effects of excessive levels of n-6 PUFAs in diets. This review discusses these human health issues relating to changes in diets based on environmental and industrial changes as well as strategies in East Africa for improving lipid composition of food using indigenous sources.
    Molecular and Cellular Endocrinology 10/2014; 398(1-2). DOI:10.1016/j.mce.2014.10.009 · 4.24 Impact Factor