Article

BIM deficiency differentially impacts the function of kidney endothelial and epithelial cells through modulation of their local microenvironment

Dept. of Pediatrics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53792-4108, USA.
AJP Renal Physiology (Impact Factor: 4.42). 12/2011; 302(7):F809-19. DOI: 10.1152/ajprenal.00498.2011
Source: PubMed

ABSTRACT The extracellular matrix (ECM) acts as a scaffold for kidney cellular organization. Local secretion of the ECM allows kidney cells to readily adapt to changes occurring within the kidney. In addition to providing structural support for cells, the ECM also modulates cell survival, migration, proliferation, and differentiation. Although aberrant regulation of ECM proteins can play a causative role in many diseases, it is not known whether ECM production, cell adhesion, and migration are regulated in a similar manner in kidney epithelial and endothelial cells. Here, we demonstrate that lack of BIM expression differentially impacts kidney endothelial and epithelial cell ECM production, migration, and adhesion, further emphasizing the specialized role of these cell types in kidney function. Bim -/- kidney epithelial cells demonstrated decreased migration, increased adhesion, and sustained expression of osteopontin and thrombospondin-1 (TSP1). In contrast, bim -/- kidney endothelial cells demonstrated increased cell migration, and decreased expression of osteopontin and TSP1. We also observed a fivefold increase in VEGF expression in bim -/- kidney endothelial cells consistent with their increased migration and capillary morphogenesis. These cells also had decreased endothelial nitric oxide synthase activity and nitric oxide bioavailability. Thus kidney endothelial and epithelial cells make unique contributions to the regulation of their ECM composition, with specific impact on adhesive and migratory properties that are essential for their proper function.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thrombospondin-1 (TSP-1) is a 450-kDa matricellar glycoprotein. By its various domains, it can interact with various partners and exhibit anti-angiogenic, pro-apoptotic and immunomodulatory activities. TSP-1 is also a major endogenous activator of the pro-fibrotic growth factor TGF-β. In healthy adult renal parenchyma, TSP-1 expression is very scarce and limited to Bowman's capsule and interstitium. During nephropathies, many cell types can express or secrete TSP-1 (mesangial, endothelial, smooth muscle, tubular cells, podocytes and fibroblasts) depending on the nature of injury and the evolutive stage of the disease. Inhibition of the different domains of TSP-1 using specific antibodies or peptides, blockade of TSP-1 expression by antisense oligonucleotides and use of knock-out mice, allowed to identify the role of TSP-1 in various models of experimental nephropathy. All these studies demonstrated a deleterious effect of TSP-1 on renal repair by inducing TGF-β and fibrosis, decreasing VEGF and capillary density, and enhancing inflammatory cells recruitment. Thus, TSP-1 represents a potential therapeutic target for the management of chronic kidney diseases.
    Medecine sciences: M/S 12/2013; 29(12):1131-7. DOI:10.1051/medsci/20132912017 · 0.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The growth of new blood vessels by angiogenesis is essential for normal development, but can also cause or contribute to the pathology of numerous diseases. Recent studies have shown that BIM, a pro-apoptotic BCL2-family protein, is required for endothelial cell apoptosis in vivo, and can contribute to the anti-angiogenic effect of VEGF-A inhibitors in certain tumor models. Despite its importance, the extent to which BIM is autonomously required for physiological endothelial apoptosis remains unknown and its regulation under such conditions is poorly defined. While the transcription factor FOXO3 has been proposed to induce Bim in response to growth factor withdrawal, evidence for this function is circumstantial. We report that apoptosis was reduced in Bim(-/-) primary endothelial cells, demonstrating a cell-autonomous role for BIM in endothelial death following serum and growth factor withdrawal. In conflict with in vitro studies, BIM-dependent endothelial death in vivo did not require FOXO3. Moreover, endothelial apoptosis proceeded normally in mice lacking FOXO-binding sites in the Bim promoter. Bim mRNA was upregulated in endothelial cells starved of serum and growth factors and this was accompanied by the downregulation of miRNAs of the miR-17∼92 cluster. Bim mRNA levels were also elevated in miR-17∼92(+/-) endothelial cells cultured under steady-state conditions, suggesting that miR-17∼92 cluster miRNAs may contribute to regulating overall Bim mRNA levels in endothelial cells.Cell Death and Differentiation advance online publication, 27 June 2014; doi:10.1038/cdd.2014.90.
    Cell Death and Differentiation 06/2014; DOI:10.1038/cdd.2014.90 · 8.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutation in CYP1B1 is reported in patients with congenital glaucoma. However, the underlying mechanisms remain unknown. Here we show increased diurnal intraocular pressure (IOP) in Cyp1b1-deficient (Cyp1b1(-/-)) mice. Cyp1b1(-/-) mice presented ultrastructural irregular collagen distribution in their trabecular meshwork (TM) tissue, along with increased oxidative stress and decreased levels of Periostin (Postn). Increased levels of oxidative stress and decreased levels of Postn were also detected in human glaucomatous TM tissues. Furthermore, Postn-deficient mice exhibited similar TM tissue ultrastructural abnormalities as Cyp1b1(-/-) mice. Administration of antioxidant N-acetylcysteine (NAC) restored structural abnormality of TM tissue in Cyp1b1(-/-) mice. In addition, TM cells prepared from Cyp1b1(-/-) mice exhibited increased oxidative stress, altered adhesion and decreased levels of Postn. These aberrant cellular responses were reversed in the presence of NAC or by restoration of Cyp1b1 expression. Cyp1b1 knockdown or inhibition of CYP1B1 activity in Cyp1b1(+/+) TM cells resulted in a Cyp1b1(-/-) phenotype. Thus, metabolic activity of CYP1B1 contributes to oxidative homeostasis and ultrastructural organization and function of TM tissue through modulation of Postn expression.
    Molecular and Cellular Biology 08/2013; DOI:10.1128/MCB.00856-13 · 5.04 Impact Factor