Solid-state NMR spectroscopy of protein complexes.

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2012; 831:303-31. DOI: 10.1007/978-1-61779-480-3_17
Source: PubMed

ABSTRACT Protein-protein interactions are vital for many biological processes. These interactions often result in the formation of protein assemblies that are large in size, insoluble, and difficult to crystallize, and therefore are challenging to study by structure biology techniques, such as single crystal X-ray diffraction and solution NMR spectroscopy. Solid-state NMR (SSNMR) spectroscopy is emerging as a promising technique for studies of such protein assemblies because it is not limited by molecular size, solubility, or lack of long-range order. In the past several years, we have applied magic angle spinning SSNMR-based methods to study several protein complexes. In this chapter, we discuss the general SSNMR methodologies employed for structural and dynamics analyses of protein complexes with specific examples from our work on thioredoxin reassemblies, HIV-1 capsid protein assemblies, and microtubule-associated protein assemblies. We present protocols for sample preparation and characterization, pulse sequences, SSNMR spectra collection, and data analysis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A key stage in HIV-1 maturation towards an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediates using Magic Angle Spinning NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding-quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies yield, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores, and establish the importance of sequence-dependent conformational plasticity in CA assembly.
    Journal of the American Chemical Society 10/2013; · 11.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear magnetic resonance (NMR) is a spectroscopic technique based in the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits. NMR has been instrumental to describe conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle; in this sense, NMR is also the only technique currently available to describe, in atomic detail, the conformational preferences of natively unfolded viral proteins. NMR has also complemented X-ray crystallography and has been combined with electron microscopy to obtain pseudo-atomic models of entire virus capsids. Finally, the joint use of liquid and solid-state NMR has allowed the identification of conformational changes in intact viral capsids on insertion in host membranes.
    Sub-cellular biochemistry 01/2013; 68:145-76.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35-40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD-RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD-RFDR sequences experimentally on a U-(13)C,(15)N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD-RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD-RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD-RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD-RFDR experiment is beneficial in a broad range of conditions, including both high and moderate MAS frequencies and magnetic fields.
    Journal of Biomolecular NMR 11/2014; · 3.31 Impact Factor