Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions

Gut Immunology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom.
PLoS ONE (Impact Factor: 3.53). 12/2011; 6(12):e28284. DOI: 10.1371/journal.pone.0028284
Source: PubMed

ABSTRACT Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota.
Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent, Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes.
The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene.

Download full-text


Available from: Rustam Aminov, Aug 24, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seventy-two, suckling piglets, obtained from 9 litters standardized to 8 piglets, were assigned to 1 of 3 treatments (n = 24) to compare short-term, early administration with intermittent, longer-term administration of Lactobacillus reuteri I5007. The treatments were a control (given a placebo of 0.1% peptone water from day 1 to 5) or treatments in which 1.7 × 1010 CFU L. reuteri was administrated either daily for 4 days starting on day 1 or every 4th day from day 1 to 17. Five piglets per treatment were killed at 3 time points (day 7, 14 and 21). Denaturing Gradient Electrophoresis of ileal digesta revealed an increase in the presence of L. reuteri I5007 and Clostridium lentocellum (on day 14 and 21) in the every 4th-day treatment and Actinobacillus porcinus (on day 7 and 14) in both L. reuteri treatments, while reducing the abundance of E. coli on day 21 in the every 4th-day treatment. Real-time qPCR of ileal digesta showed an increase in Bifidobacterium spp. on day 14 for both L. reuteri I5007 treatments. An increase in the concentration of lactic acid and a lower pH was observed in the first 4-day treatment on day 7 and the every 4th day treatment on day 14. The relative abundance of mRNA for TGF-β was increased while that for IFN-γ was decreased in the mesenteric lymph nodes of piglets treated with L. reuteri every 4th day. In conclusion, early intervention with L. reuteri increases the presence of beneficial bacteria and decreases the presence of undesirable microbes in the lower gastrointestinal tract. The changes appear to be mediated by altering the intestinal pH through lactic acid production resulting in favorable bacterial species colonization. A prolonged duration of treatment (i.e. every 4th day) would appear to be superior to treatment only during the first 4 days.
    PLoS ONE 03/2015; 10(3):e0119505. DOI:10.1371/journal.pone.0119505 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gastrointestinal (GI) microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn's disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.
    Nutrients 08/2012; 4(8):1095-119. DOI:10.3390/nu4081095 · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter contains sections titled: Introduction Dietary Origins of the Major Environmental Concerns Strategies for Mitigating the Major Environmental Concerns Summary References
    Sustainable Swine Nutrition, 11/2012: pages 365-411; , ISBN: 9780813805344
Show more