Engineering Genetically Encoded Nanosensors for Real-Time In Vivo Measurements of Citrate Concentrations

Cardiff University, United Kingdom
PLoS ONE (Impact Factor: 3.53). 12/2011; 6(12):e28245. DOI: 10.1371/journal.pone.0028245
Source: PubMed

ABSTRACT Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on Förster resonance energy transfer (FRET). We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interactions between sigma factor σR and its corresponding zinc-binding anti-sigma (ZAS) protein RsrA trigger the thioredoxin system for maintaining cellular redox homeostasis in S. coelicolor. RsrA bound to zinc associates with σR, inhibiting its transcriptional activity in a reducing environment. During disulfide stress it forms intramolecular disulfide bonds, leading to zinc release and dissociation from σR, which initiates transcription to produce reductase and thioredoxin. We designed a fluorescence resonance energy transfer (FRET) based system for monitoring protein-protein interactions between σR and RsrA to further understand how this redox switch regulates the thioredoxin system in S. coelicolor in response to its redox environment, especially various reactive oxygen species (ROS) derived from different metabolic pathways, and clarify the different response mechanisms between Zn-RsrA and apo-RsrA. By the use of the FRET approach described here, we showed that zinc protected thiols in RsrA and causes the σR-RsrA complex to form a more compact structure. This system was also utilized to detect changes in redox status induced by ROS and diamide in real time in E. coli cells.
    PLoS ONE 03/2014; 9(3):e92330. DOI:10.1371/journal.pone.0092330 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The method described here for single-cell tracking of intracellular ATP in live bacteria has many advantages compared to conventional ensemble-averaged assays. It provides a continuous real-time readout of bacterial ATP content, cell vitality, and antimicrobial mechanism of action with high temporal resolution at the single-cell level. In combination with high-throughput microfluidic devices and automated microscopy, this method also has the potential to serve as a novel screening tool in antimicrobial drug discovery. Copyright © 2015 Maglica et al.
    mBio 02/2015; 6(1):e02236-14. DOI:10.1128/mBio.02236-14 · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.
    Frontiers in Cellular and Infection Microbiology 4:191. DOI:10.3389/fcimb.2014.00191 · 2.62 Impact Factor

Full-text (3 Sources)

Available from
Oct 10, 2014