Characterization of intestinal dendritic cells in murine norovirus infection.

Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin.
The Open Immunology Journal 01/2011; 4:22-30.
Source: PubMed


We have shown that respiratory viral infections drive allergic disease through dendritic cells, whether gastrointestinal viruses induce allergies is not known. Norovirus infections are a major cause of gastroenteritis in humans. We used murine norovirus (MNV) to explore the effect of MNV infection on gastrointestinal conventional DCs (cDCs) and plasmacytoid DCs (pDCs). MNV infection induced disparate effects on cDCs and pDCs in lymphoid tissues of the small intestine and draining mesenteric lymph nodes. FcεRI was transiently expressed on lamina propria cDCs, but not on pDCs. In addition, feeding ovalbumin during the viral infection led to a modest, brief induction of anti-ovalbumin IgE. Together, these data suggest that like with a respiratory viral infection, an intestinal viral infection may be sufficient to induce changes in DCs and the generation of food-specific IgE. Whether this represents a novel mechanism of food allergy remains to be determined.

Download full-text


Available from: Mitchell H Grayson, Mar 13, 2015
23 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a mouse model of viral induced atopic disease, expression of FcεRI on dendritic cells is critical. While adult human conventional (cDC) and plasmacytoid (pDC) dendritic cells have been shown to express FcεRI, it is not known if this receptor is expressed in childhood and how its expression is governed by IgE. Following informed consent of subjects (n = 27, aged 12-188 months), peripheral blood was stained for surface expression of CD19, ILT7, CD1c, IgE, FcεRI and analyzed by flow cytometry (cDC: CD19(-) ILT7(-) CD1c(+); pDC: CD19(-) ILT7(+) CD1c(-)). Total and specific serum IgE levels to food and inhalant allergens were determined by ImmunoCAP, and the relationship between FcεRI expression on dendritic cells and sensitization, free IgE, cell bound IgE, and age was determined. Independent of sensitization status, FcεRI expression was noted on cDC and pDC as early as 12 months of age. Serum IgE level correlated with expression of FcεRI on cDC, but not pDC. Based on the concentration of IgE, a complex relationship was found between surface bound IgE and expression of FcεRI on cDC. pDC exhibited a linear relationship of FcεRI expression and bound IgE that was consistent through all IgE concentrations. In children, FcεRI expression on cDC and pDC is modulated differently by serum and cell bound IgE. IgE governance of FcεRI expression on cDC depends upon a complex relationship. Further studies are needed to determine the functional roles of FcεRI on cDC and pDC.
    PLoS ONE 02/2012; 7(2):e32556. DOI:10.1371/journal.pone.0032556 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of atopic diseases continues to rise in modernized countries, without a clear explanation for this increase. One potential cause identified from epidemiologic studies of children is respiratory RNA viral infections leading to development of recurrent wheezing, asthma, and allergic sensitization. We review human epidemiologic data that both support and refute the role of viruses in this process. Exploring recent murine models, we document possible immunologic mechanisms that could translate a viral infection into atopic disease. We further discuss evidence for a post-viral "atopic cycle" that could explain the development of multiple allergen sensitization, and we explore available data to suggest a connection between viral infections of the gastrointestinal tract with the development of food allergy. Taken together, this review documents evidence to support the "viral hypothesis", and, in particular, the role of RNA viruses in the development of atopic disease.
    Current Allergy and Asthma Reports 08/2012; 12(6). DOI:10.1007/s11882-012-0295-y · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DC) are permissive to murine norovirus (MNV) infection in vitro and in vivo. However, their roles during infection in vivo are not well defined. To determine the role of DC during infection, conventional DC were depleted from CD11c-DTR mice and infected with a persistent MNV strain. Viral titers in the intestine and secondary lymphoid organs were determined at early time points during infection, and anti-MNV antibody responses were analyzed later during infection. Depletion of conventional DC resulted in increased viral loads in intestinal tissues, impaired generation of antibody responses, and a failure of MNV to efficiently infect lymphoid tissues. These data suggest that DC play multiple roles in MNV pathogenesis, in both innate immunity and the efficient generation of adaptive immune responses against MNV, as well as by promoting the dissemination of MNV to secondary lymphoid tissues. This is the first study to probe the roles of DC in controlling and/or facilitating a norovirus infection in vivo and provides the basis for further studies aimed at defining mechanisms by which DC control MNV replication and promote viral dissemination.
    Journal of General Virology 05/2013; 94(Pt_8). DOI:10.1099/vir.0.052134-0 · 3.18 Impact Factor
Show more