Article

Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation.

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, 221 Maryland Hall, Baltimore, MD 21218-2694, USA.
Protein Engineering Design and Selection (Impact Factor: 2.32). 12/2011; 25(1):27-38. DOI: 10.1093/protein/gzr052
Source: PubMed

ABSTRACT Recently, researchers have created novel fluorescent proteins by harnessing the somatic hypermutation ability of B cells. In this study, we examined if this approach could be used to evolve a non-fluorescent protein, namely the anti-apoptosis protein Bcl-x(L), using the Ramos B-cell line. After demonstrating that Ramos cells were capable of mutating a heterologous bcl-x(L) transgene, the cells were exposed to multiple rounds of the chemical apoptosis inducer staurosporine followed by rounds of recovery in fresh medium. The engineered B cells expressing Bcl-x(L) exhibited progressively lower increases in apoptosis activation as measured by caspase-3 activity after successive rounds of selective pressure with staurosporine treatment. Within the B-cell genome, a number of mutated bcl-x(L) transgene variants were identified after three rounds of evolution, including a mutation of Bcl-x(L) Asp29 to either Asn or His, in 8 out of 23 evaluated constructs that represented at least five distinct Ramos subpopulations. Subsequently, Chinese hamster ovary (CHO) cells engineered to overexpress the Bcl-x(L) Asp29Asn variant showed enhanced apoptosis resistance against an orthogonal apoptosis insult, Sindbis virus infection, when compared with cells expressing the wild-type Bcl-x(L) protein. These findings provide, to our knowledge, the first demonstration of evolution of a recombinant mammalian protein in a mammalian expression system.

0 Followers
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes.
    Current Opinion in Structural Biology 04/2014; 26C:32-38. DOI:10.1016/j.sbi.2014.03.005 · 8.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CHO cells are the mammalian cell line of choice for recombinant production of therapeutic proteins. However, their low rate of proliferation limits obtainable space-time yields due to inefficient biomass accumulation. We set out to correlate microRNA transcription to cell-specific growth-rate by microarray analysis of 5 CHO suspension cell lines with low to high specific growth rates. Global microRNA expression analysis and Pearson correlation studies showed that mature microRNA transcript levels are predominately up-regulated in a state of fast proliferation (46 positively correlated, 17 negatively correlated). To further validate this observation, the expression of three genes that are central to microRNA biogenesis (Dicer, Drosha and Dgcr8) was analyzed. The expression of Dicer, which mediates the final step in microRNA maturation, was found to be strongly correlated to growth rate. Accordingly, knockdown of Dicer impaired cell growth by reducing growth-correlating microRNA transcripts. Moderate ectopic overexpression of Dicer positively affected cell growth, while strong overexpression impaired growth, presumably due to the concomitant increase of microRNAs that inhibit cell growth. Our data therefore suggest that Dicer dependent microRNAs regulate CHO cell proliferation and that Dicer could serve as a potential surrogate marker for cellular proliferation.
    Journal of Biotechnology 01/2014; 190. DOI:10.1016/j.jbiotec.2013.12.018 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Directed evolution has become a well-established tool for improving proteins and biological systems. A critical aspect of directed evolution is the selection of a suitable host organism for achieving functional expression of the target gene. To date, most directed evolution studies have used either Escherichia coli or Saccharomyces cerevisiae as a host; however, other bacterial and yeast species, as well as mammalian and insect cell lines, have also been successfully used. Recent advances in synthetic biology and genomics have opened the possibility of expanding the use of directed evolution to new host organisms such as microalgae. This review focuses on the different host organisms used in directed evolution and highlights some of the recent directed evolution strategies used in these organisms.
    09/2012; 2:e201209012. DOI:10.5936/csbj.201209012

Preview

Download
2 Downloads
Available from