Circulating CXCL11 and CXCL10 are increased in hepatitis C-associated cryoglobulinemia in the presence of autoimmune thyroiditis

Department of Internal Medicine, University of Pisa, School of Medicine, Via Roma, 67, 56100, Pisa, Italy, .
Modern Rheumatology (Impact Factor: 2.21). 12/2011; 22(5):659-67. DOI: 10.1007/s10165-011-0565-x
Source: PubMed

ABSTRACT No data are available about circulating levels of the CXCL11 chemokine in hepatitis C virus (HCV)-associated mixed cryoglobulinemia (MC) patients with or without autoimmune thyroiditis (AT). The aim of the present study, therefore, was to evaluate serum CXCL11 levels in these patients.
Serum CXCL11 (and for comparison, CXCL10) was measured in 45 patients with MC, 45 patients with MC and AT (MC + AT), 45 sex- and age-matched controls without AT (control 1), 45 sex- and age-matched patients with AT without cryoglobulinemia (control 2), and in 45 sex- and age-matched patients with hepatitis C chronic infection without MC (HCV+).
Serum CXCL11 and CXCL10 levels were significantly higher in control 2 than in control 1 (p < 0.01). MC patients had CXCL11 and CXCL10 significantly higher than control 1 (p < 0.01). MC + AT patients had CXCL11 and CXCL10 higher than control 2 (p < 0.01) and MC patients (p = 0.02). Serum CXCL11 levels were not associated with any of the clinical features of cryoglobulinemia in patients with MC and MC + AT, which was the same for CXCL10. CXCL10 and CXCL11 in HCV+ patients were significantly higher than in controls 1 and 2, but lower than in MC or MC+AT patients.
Our study first demonstrates higher serum levels of CXCL11 chemokine in patients with MC than in HCV+ patients, and in particular in the presence of AT.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The interferon-γ-inducible protein 10 (IP-10) was initially identified as a chemokine that is induced by interferon (IFN)-γ. IP-10 exerts its function through binding to chemokine (C-X-C motif) receptor 3 (CXCR3). IP-10 and its receptor, CXCR3, appear to contribute to the pathogenesis of many autoimmune diseases, organ specific (such as type 1 diabetes, Graves' disease and ophthalmopathy), or systemic (such as systemic lupus erythematosus, mixed cryoglobulinemia, Sjogren syndrome, or systemic sclerosis). The secretion of IP-10 by (CD)4+, CD8+, and natural killer is dependent on IFN-γ. Under the influence of IFN-γ, IP-10 is secreted by thyrocytes. Determination of high level of IP-10 in peripheral fluids is therefore a marker of a T helper 1 orientated immune response. High levels of circulating IP-10, have been shown in patients with autoimmune thyroiditis (AT). Among patients with AT, IP-10 levels were significantly higher in those with a hypoechoic ultrasonographic pattern, which is a sign of a more severe lympho-monocytic infiltration, and in those with hypothyroidism. For these reasons, it has been postulated that IP-10 could be a marker of a stronger and more aggressive inflammatory response in the thyroid, subsequently leading to thyroid destruction and hypothyroidism. Further studies are needed to investigate whether IP-10 is a novel therapeutic target in AT.
    Hormone and Metabolic Research 06/2014; 46(09). DOI:10.1055/s-0034-1382053 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Chemokines contribute to the pathogenesis of autoimmune hepatitis by directing the migration and positioning of inflammatory and immune cells within the liver.AimDescribe the liver-infiltrating effector cell populations in autoimmune hepatitis, indicate the chemokines that influence their migration, describe the role of chemokines in hepatic fibrosis and identify chemokine-directed treatment opportunities.Methods Studies cited in Pub Med from 1972 to 2014 for autoimmune hepatitis, chemokines in liver disease, pathogenesis of autoimmune hepatitis and chemokine therapy were selected.ResultsT helper type 17 lymphocytes expressing CXCR3 and CCR6 are attracted to the liver by the secretion of CXCL9, CXCL10 and CXCL11. These cells recruit pro-inflammatory T helper type 1 lymphocytes expressing CXCR3 and CCR5 by secreting CXCL10. Resident natural killer T cells expressing CXCR6 migrate in response to the local secretion of CXCL16, and they modulate the inflammatory response. T helper type 2 lymphocytes expressing CCR4 are attracted by CCL17 and CCL22, and they dampen the expansion of pro-inflammatory cells. Regulatory T cells expressing CXCR3 are attracted by the secretion of CXCL9, and they help dampen the pro-inflammatory responses. CCL2, CCL3, CCL5, CXCL4, CXCL10 and CXCL16 promote fibrosis by activating or attracting hepatic stellate cells, and CX3CL1 may prevent fibrosis by affecting the apoptosis of monocytes.Conclusions Chemokines are requisites for mobilising, directing and positioning the effector cells in immune-mediated liver disease. They are feasible therapeutic targets in autoimmune hepatitis, and the evaluation of monoclonal antibodies that neutralise the pro-inflammatory ligands or designer peptides that block receptor activity are investigational opportunities.
    Alimentary Pharmacology & Therapeutics 05/2014; 40(3). DOI:10.1111/apt.12825 · 4.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines are intercellular mediators involved in viral control and liver damage being induced by infection with hepatitis C virus (HCV). The complex cytokine network operating during initial infection allows a coordinated, effective development of both innate and adaptive immune responses. However, HCV interferes with cytokines at various levels and escapes immune response by inducing a T-helper (Th)2/T cytotoxic 2 cytokine profile. Inability to control infection leads to the recruitment of inflammatory infiltrates into the liver parenchyma by interferon (IFN)-γ-inducible CXC chemokine ligand (CXCL)9, -10, and -11 chemokines, which results in sustained liver damage and eventually in liver cirrhosis. The most important systemic HCV-related extrahepatic diseases-mixed cryoglobulinemia, lymphoproliferative disorders, thyroid autoimmune disorders, and type 2 diabetes-are associated with a complex dysregulation of the cytokine/chemokine network, involving proinflammatory and Th1 chemokines. The therapeutical administration of cytokines such as IFN-α may result in viral clearance during persistent infection and revert this process. Theoretically agents that selectively neutralize CXCL10 could increase patient responsiveness to traditional IFN-based HCV therapy. Several studies have reported IL-28B polymorphisms and circulating CXCL10 may be a prognostic markers for HCV treatment efficacy in HCV genotype 1 infection.
    Immunologic Research 11/2014; 60(2-3). DOI:10.1007/s12026-014-8569-1 · 3.53 Impact Factor