Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo.

The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2011; 108(52):21241-6. DOI: 10.1073/pnas.1108261109
Source: PubMed

ABSTRACT Unbalanced visual input during development induces persistent alterations in the function and structure of visual cortical neurons. The molecular mechanisms that drive activity-dependent changes await direct visualization of underlying signals at individual synapses in vivo. By using a genetically engineered Förster resonance energy transfer (FRET) probe for the detection of CaMKII activity, and two-photon imaging of single synapses within identified functional domains, we have revealed unexpected and differential mechanisms in specific subsets of synapses in vivo. Brief monocular deprivation leads to activation of CaMKII in most synapses of layer 2/3 pyramidal cells within deprived eye domains, despite reduced visual drive, but not in nondeprived eye domains. Synapses that are eliminated in deprived eye domains have low basal CaMKII activity, implying a protective role for activated CaMKII against synapse elimination.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
    Chemistry & biology 01/2014; DOI:10.1016/j.chembiol.2013.12.012 · 6.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synapses are the building blocks of neuronal networks. Spines, the postsynaptic elements, are morphologically the most plastic part of the synapse. It is thought that spine plasticity underlies learning and memory processes, driven by kinases and cytoskeleton protein reorganization. Spine strength depends primarily on the number of incorporated glutamatergic receptors, which are more numerous in larger spines. Intrinsic and circadian fluctuations, occurring independently of presynaptic stimulation, demonstrate the native instability of spines. Despite innate spine instability some spines remain intact lifelong. Threats to spine survival are reduced by physical and mental activity, and declining sensory input, conditions characteristic for aging. Large spines are considered less vulnerable than thin spines, and in the older brain large spines are more abundant, whereas the thin spines are functionally weaker. It can be speculated that this shift towards memory spines contributes to enhanced retention of remote memories typically seen in the elderly. Gaining further insight in spine plasticity regulation, its homeostatic nature and how to maintain spine health will be important future research topics in Neuroscience.
    Neuroscience & Biobehavioral Reviews 07/2014; 50. DOI:10.1016/j.neubiorev.2014.06.012 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation, and germline transgenesis. Single cell electroporation (SCE) has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of SCE to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.
    Frontiers in Neuroanatomy 04/2015; 9(36). DOI:10.3389/fnana.2015.00036 · 4.18 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014