Article

Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome.

Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 12/2011; 302(3):H643-53. DOI: 10.1152/ajpheart.00606.2011
Source: PubMed

ABSTRACT Numerous studies on metabolic syndrome (MetSyn), a cluster of metabolic abnormalities, have demonstrated its profound impact on cardiovascular and blood microvascular health; however, the effects of MetSyn on lymphatic function are not well understood. We hypothesized that MetSyn would modulate lymphatic muscle activity and alter muscularized lymphatic function similar to the impairment of blood vessel function associated with MetSyn, particularly given the direct proximity of the lymphatics to the chronically inflamed adipose depots. To test this hypothesis, rats were placed on a high-fructose diet (60%) for 7 wk, and their progression to MetSyn was assessed through serum insulin and triglyceride levels in addition to the expression of metabolic and inflammatory genes in the liver. Mesenteric lymphatic vessels were isolated and subjected to different transmural pressures while lymphatic pumping and contractile parameters were evaluated. Lymphatics from MetSyn rats had significant negative chronotropic effects at all pressures that effectively reduced the intrinsic flow-generating capacity of these vessels by ∼50%. Furthermore, lymphatics were remodeled to a significantly smaller diameter in the animals with MetSyn. Wire myograph experiments demonstrated that permeabilized lymphatics from the MetSyn group exhibited a significant decrease in force generation and were less sensitive to Ca(2+), although there were no significant changes in lymphatic muscle cell coverage or morphology. Thus, our data provide the first evidence that MetSyn induces a remodeling of collecting lymphatics, thereby effectively reducing their potential load capabilities and impairing the intrinsic contractility required for proper lymph flow.

0 Bookmarks
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the presence and alteration of lymphatic vessels in joints of arthritic mice using a whole-slide imaging system. Joints and long bone sections were cut from paraffin blocks of two mouse models of arthritis: meniscal-ligamentous injury (MLI)-induced osteoarthritis (OA) and TNF transgene (TNF-Tg)-induced rheumatoid arthritis (RA). MLI-OA mice were fed a high fat diet to accelerate OA development. TNF-Tg mice were treated with lymphatic growth factor VEGF-C virus to stimulate lymphangiogenesis. Sections were double immunofluorescence stained with anti-podoplanin and alpha-smooth muscle actin antibodies. The area and number of lymphatic capillaries and mature lymphatic vessels were determined using a whole-slide imaging system and its associated software. Lymphatic vessels in joints were distributed in soft tissues mainly around the joint capsule, ligaments, fat pads and muscles. In long bones, enriched lymphatic vessels were present in the periosteal areas adjacent to the blood vessels. Occasionally, lymphatic vessels were observed in the cortical bone. Increased lymphatic capillaries, but decreased mature lymphatic vessels, were detected in both OA and RA joints. VEGF-C treatment increased lymphatic capillary and mature vessel formation in RA joints. Our findings suggest that the lymphatic system may play an important role in arthritis pathogenesis and treatment.
    Biotechnic & Histochemistry 11/2012; · 0.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.
    Microvascular Research 06/2014; · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the cap-ability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with custo-mized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contrac-tion through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C 16 . This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism.
    Journal of Biomedical Optics 08/2012; 17(8):086005. · 2.75 Impact Factor

Full-text

View
111 Downloads
Available from
May 15, 2014