Article

TraML--a standard format for exchange of selected reaction monitoring transition lists.

Institute for Systems Biology, Seattle, Washington 98109, USA.
Molecular &amp Cellular Proteomics (Impact Factor: 7.25). 12/2011; 11(4):R111.015040. DOI: 10.1074/mcp.R111.015040
Source: PubMed

ABSTRACT Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring.

0 Bookmarks
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml.
    Molecular &amp Cellular Proteomics 04/2014; · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: mzTab is the most recent standard format developed by the Proteomics Standards Initiative (PSI). mzTab is a flexible tab-delimited file that can capture identification and quantification results coming from mass spectrometry (MS)-based proteomics and metabolomics approaches. We here present an open-source Java Application Programming Interface (API) for mzTab called jmzTab.The software allows the efficient processing of mzTab files, providing read and write capabilities, and is designed to be embedded in other software packages. The second key feature of the jmzTab model is that it provides a flexible framework to maintain the logical integrity between the metadata and the table-based sections in the mzTab files. In this article, as two example implementations, we also describe two stand-alone tools that can be used to validate mzTab files and to convert PRIDE XML files to mzTab. The library is freely available at http://mztab.googlecode.com.This article is protected by copyright. All rights reserved
    Proteomics 03/2014; · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liquid chromatography–mass spectrometry (LC–MS) is a commonly used analytical platform for non-targeted metabolite profiling experiments. Although data acquisition, processing and statistical analyses are almost routine in such experiments, further annotation and subsequent identification of chemical compounds are not. For identification, tandem mass spectra provide valuable information towards the structure of chemical compounds. These are typically acquired online, in data-dependent mode, or offline, using handcrafted acquisition methods and manually extracted from raw data. Here, we present several methods to fast-track and improve both the acquisition and processing of LC–MS/MS data. Our nearly online (nearline) data-dependent tandem MS strategy creates a minimal set of LC–MS/MS acquisition methods for relevant features revealed by a preceding non-targeted profiling experiment. Using different filtering criteria, such as intensity or ion type, the acquisition of irrelevant spectra is minimized. Afterwards, LC–MS/MS raw data are processed with feature detection and grouping algorithms. The extracted tandem mass spectra can be used for both library search and de-novo identification methods. The algorithms are implemented in the R package MetShot and support the export to Bruker, Agilent or Waters QTOF instruments and the vendor-independent TraML standard. We evaluate the performance of our workflow on a Bruker micrOTOF-Q by comparison of automatically acquired and extracted tandem mass spectra obtained from a mixture of natural product standards against manually extracted reference spectra. Using Arabidopsis thaliana wild-type and biosynthetic gene knockout plants, we characterize the metabolic products of a biosynthetic pathway and demonstrate the integration of our approach into a typical non-targeted metabolite profiling workflow.
    Metabolomics 03/2012; 9(S1):84-91. · 3.97 Impact Factor