Article

α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth.

Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, 833 South Wood Street, Chicago, IL 60612-7230, USA.
Carcinogenesis (Impact Factor: 5.64). 12/2011; 33(2):413-9. DOI: 10.1093/carcin/bgr291
Source: PubMed

ABSTRACT There is a need to characterize promising dietary agents for chemoprevention and therapy of prostate cancer (PCa). We examined the anticancer effect of α-mangostin, derived from the mangosteen fruit, in human PCa cells and its role in targeting cell cycle-related proteins involved in prostate carcinogenesis. Using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, we found that α-mangostin significantly decreases PCa cell viability in a dose-dependent manner. Further analysis using flow cytometry identified cell cycle arrest along with apoptosis. To establish a more precise mechanism of action, we performed a cell free biochemical kinase assay against multiple cyclins/cyclin-dependent kinases (CDKs) involved in cell cycle progression; the most significant inhibition in the cell free-based assays was CDK4, a critical component of the G1 phase. Through molecular modeling, we evaluated α-mangostin against the adenosine triphosphate-binding pocket of CDK4 and propose three possible orientations that may result in CDK4 inhibition. We then performed an in vivo animal study to evaluate the ability of α-mangostin to suppress tumor growth. Athymic nude mice were implanted with 22Rv1 cells and treated with vehicle or α-mangostin (100 mg/kg) by oral gavage. At the conclusion of the study, mice in the control cohort had a tumor volume of 1190 mm(3), while the treatment group had a tumor volume of 410 mm(3) (P < 0.01). The ability of α-mangostin to inhibit PCa in vitro and in vivo suggests α-mangostin may be a novel agent for the management of PCa.

1 Bookmark
 · 
236 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A variety of bioactive food components have been shown to modulate inflammatory responses and to attenuate carcinogenesis. Polyphenols isolated several years ago from various medicinal plants now seem to have a prominent role in the prevention and therapy of a variety of ailments. Mangiferin, a unique, important, and highly investigated polyphenol, has attracted much attention of late for its potential as a chemopreventive and chemotherapeutic agent against various types of cancer. Mangiferin has been shown to target multiple proinflammatory transcription factors, cell- cycle proteins, growth factors, kinases, cytokines, chemokines, adhesion molecules, and inflammatory enzymes. These targets can potentially mediate the chemopreventive and therapeutic effects of mangiferin by inhibiting the initiation, promotion, and metastasis of cancer. This review not only summarizes the diverse molecular targets of mangiferin, but also gives the results of various preclinical studies that have been performed in the last decade with this promising polyphenol.
    Journal of Receptor and Signal Transduction Research 07/2014; · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acid synthase (FAS) has been proven over-expressed in human breast cancer cells and consequently, has been recognized as a target for breast cancer treatment. Alpha-mangostin, a natural xanthone found in mangosteen pericarp, has a variety of biological activities, including anti-cancer effect. In our previous study, alpha-mangostin had been found both fast-binding and slow-binding inhibitions to FAS in vitro. This study was designed to investigate the activity of alpha-mangostin on intracellular FAS activity in FAS over-expressed human breast cancer cells, and to testify whether the anti-cancer activity of alpha-mangostin may be related to its inhibitory effect on FAS.
    Molecular cancer. 06/2014; 13(1):138.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two enzymatic systems were developed for the efficient synthesis of glycoside products of α-mangostin, a natural xanthonoid exhibiting anti-oxidant, antibacterial, anti-inflammatory, and anticancer activities. In these systems, one-pot reactions for the synthesis of UDP-α-D-glucose and UDP-α-D-2-deoxyglucose were modified and combined with a glycosyltransferase (GT) from Bacillus licheniformis DSM-13 to afford C-3 and C-6 position modified glucose and 2-deoxyglucose conjugated novel α-mangostin derivatives. α-Mangostin 3-O-β-D-glucopyranoside, α-mangostin 6-O-β-D-glucopyranoside, α-mangostin 3,6-di-O-β-D-glucopyranoside, α-mangostin 3-O-β-D-2-deoxyglucopyranoside, α-mangostin 6-O-β-D-2-deoxyglucopyranoside, and α-mangostin 3,6-di-O-β-D-2-deoxyglucopyranoside were successfully produced in practical quantities and characterized by high-resolution quadruple time-of-flight electrospray ionization-mass spectrometry (HR-QTOF ESI/MS), (1)H and (13)C NMR analyses. In excess of the substrate, the maximum productions of three α-mangostin glucopyranosides (4.8 mg/mL, 86.5 % overall conversion of α-mangostin) and three α-mangostin 2-deoxyglucopyronosides (4.0 mg/mL, 79 % overall conversion of α-mangostin) were achieved at 4-h incubation period. All the α-mangostin glycosides exhibited improved water solubility, and their antibacterial activity against three Gram-positive bacteria Micrococcus luteus, Bacillus subtilis, and Staphylococcus aureus was drastically enhanced by the glucosylation at C-3 position. In this study, diverse glycosylated α-mangostin were produced in significant quantities by using inexpensive starting materials and recycling co-factors within a reaction vessel without use of expensive NDP-sugars in the glycosylation reactions.
    Applied Microbiology and Biotechnology 07/2014; · 3.81 Impact Factor

Full-text (2 Sources)

Download
42 Downloads
Available from
May 17, 2014

Similar Publications