Article

Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells

Laboratory of Genetics, Salk Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2011; 108(51):20382-7. DOI: 10.1073/pnas.1100273108
Source: PubMed

ABSTRACT Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition.

Download full-text

Full-text

Available from: Angela Macia, Jul 28, 2015
0 Followers
 · 
167 Views
  • Source
    • "Since LINE element retrotransposition proceeds by target-site primed reverse transcription (TPRT), which requires element-encoded endonuclease (EN) and reverse transcriptase (RT) activities (Luan et al., 1993; Feng et al., 1996), we investigated whether A3A specifically interferes with L1 EN or L1 RT activity. In addition to canonical TPRT, human L1s can mobilize by an alternative, endonucleaseindependent retrotransposition mechanism (ENi) in cells that lack p53 activity and are defective for components of the non-homologous end joining (NHEJ) DNA repair machinery (Morrish et al., 2002, 2007; Coufal et al., 2011). We reasoned that if A3A specifically inhibits L1 EN activity, ENi L1 retrotransposition events should escape A3A inhibition. "
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Transposable elements are often referred to as ‘jumping genes’ because they can move between different locations within a genome. These sequences of DNA are found in many organisms and can make up a significant proportion of the genetic material: almost 50% of the DNA in the case of the human genome. Transposable elements are grouped by how they move to new locations in a genome. Some move by a cut-and-paste mechanism—whereby the transposable element DNA is removed from one location and inserted back at a new genomic location. Others, termed retrotransposons, move by a copy-and-paste mechanism: the DNA sequence is transcribed into an RNA intermediate, and then copied back into DNA before being inserted into a new location. Retrotransposons can accumulate to great numbers in genomes: and one retrotransposon, called LINE-1, is present at an estimated 500,000 copies in the human genome. Although most copies of LINE-1 are inactive, the average human genome contains about 80–100 that are predicted to be able to ‘jump’ to new locations. Given that these retrotransposons could insert into, and disrupt, vital genes, it follows that our cells would have evolved ways to limit their movement. An enzyme named APOBEC3A is known to limit the movement of LINE-1 retrotransposons in cells. APOBEC3A can alter the letters, or bases, that make up the genetic code. This enzyme acts on single-strand DNA to change ‘C’ bases to ‘U’ bases, which could explain how APOBEC3A combats LINE-1. However, no evidence for such mutation of LINE-1 sequences by APOBEC3A had been found to date. Now, Richardson et al. recreate the copying of LINE-1 RNA back into DNA in a test tube—and reveal that APOBEC3A can mutate single-strand LINE-1 DNA. Critically, as long as the RNA intermediate and DNA copy remain together, the LINE-1 DNA is protected. However, when LINE-1 inserts into a new location the temporarily exposed single strand of LINE-1 DNA becomes susceptible to mutation by APOBEC3A. Human cells can detect and destroy ‘U’ bases in DNA—and only by inhibiting this ability were Richardson et al. able to observe APOBEC3A mutations in new LINE-1 copies within the genomes of living cells. Richardson et al. speculate that the activity of APOBEC3 enzymes must strike a balance between limiting the spread of retrotransposons and minimizing the mutation of the cell's own DNA. Future work could address important questions, such as: do APOBEC enzymes affect the ‘jumping’ of LINE-1 retrotransposons in human reproductive cells and the early embryo, where new LINE-1 insertions could be passed on to subsequent generations? Also, does a loss of APOBEC3 activity lead to new LINE-1 insertions in cancerous cells? And does this effect how tumors form and/or progress? Since APOBEC3 enzymes can cause mutations in cancers, they have been proposed as new targets for anti-cancer drugs—therefore, it is crucial to uncover any harmful effects of inhibiting APOBEC3 enzymes that might limit the effectiveness of such treatments. DOI: http://dx.doi.org/10.7554/eLife.02008.002
    eLife Sciences 04/2014; 3:e02008. DOI:10.7554/eLife.02008.001 · 8.52 Impact Factor
  • Source
    • "Pluripotent human embryonic stem cells (hESCs), which can be differentiated into neural progenitors and mature neurons and astrocytes, provide another powerful model system to assess the effects of loss or inactivation of ATM. Also for these studies, ATM has either been stably knockdown by transducing hESCs with lentiviruses harbouring shRNA against ATM [27] [35], or chemically inhibited with KU-55933 [28]. Interestingly, neuronal models of A-T based on the use of patients' tissues are currently being developed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of ATM kinase, a transducer of the DNA damage response and redox sensor, causes the neurodegenerative disorder ataxia-telangiectasia (A-T). While a great deal of progress has been made in elucidating the ATM-dependent DNA damage response (DDR) network, a key challenge remains in understanding the selective susceptibility of the nervous system to faulty DDR. Several factors appear implicated in the neurodegenerative phenotype in A-T, but which of them plays a crucial role remains unclear, especially since mouse models of A-T do not fully mirror the respective human syndrome. Therefore, a number of human neural stem cell (hNSC) systems have been developed to get an insight into the molecular mechanisms of neurodegeneration as consequence of ATM inactivation. Here we review the hNSC systems developed by us an others to model A-T.
    DNA repair 05/2013; 12(8). DOI:10.1016/j.dnarep.2013.04.013 · 3.36 Impact Factor
  • Source
    • "Unlike the immune system or germline, there are no known programs of DNA breakage and repair that would provide an obvious trigger for cell death. It has been speculated that mitochondrial defects, the accumulation of ROS, transposon mobilization, innate immune responses, the regulation of apoptosis or specific repair pathway defects may contribute to triggering neuronal cell death (Coufal et al., 2011; McKinnon, 2012; Petersen et al., 2012; Valentin-Vega and Kastan, 2012). One of the central pathologies associated with A-T is neurodegeneration , characterized by cerebellar atrophy and the loss of Purkinje and granule cells and subsequent ataxia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease.
    Frontiers in Genetics 03/2013; 4:37. DOI:10.3389/fgene.2013.00037
Show more