Thymosin beta 4 is dispensable for murine cardiac development and function.

Department of Medicine, University of California-San Diego, La Jolla, 92093, USA.
Circulation Research (Impact Factor: 11.09). 12/2011; 110(3):456-64. DOI: 10.1161/CIRCRESAHA.111.258616
Source: PubMed

ABSTRACT Thymosin beta 4 (Tβ4) is a 43-amino acid factor encoded by an X-linked gene. Recent studies have suggested that Tβ4 is a key factor in cardiac development, growth, disease, epicardial integrity, and blood vessel formation. Cardiac-specific short hairpin (sh)RNA knockdown of tβ4 has been reported to result in embryonic lethality at E14.5-16.5, with severe cardiac and angiogenic defects. However, this shRNA tβ4-knockdown model did not completely abrogate Tβ4 expression. To completely ablate Tβ4 and to rule out the possibility of off-target effects associated with shRNA gene silencing, further studies of global or cardiac-specific knockouts are critical.
We examined the role of Tβ4 in developing and adult heart through global and cardiac specific tβ4-knockout mouse models.
Global tβ4-knockout mice were born at mendelian ratios and exhibited normal heart and blood vessel formation. Furthermore, in adult global tβ4-knockout mice, cardiac function, capillary density, expression of key cardiac fetal and angiogenic genes, epicardial marker expression, and extracellular matrix deposition were indistinguishable from that of controls. Tissue-specific tβ4-deficient mice, generated by crossing tβ4-floxed mice to Nkx2.5-Cre and αMHC-Cre, were also found to have no phenotype.
We conclude that Tβ4 is dispensable for embryonic viability, heart development, coronary vessel development, and adult myocardial function.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight, and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared to wild type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition, and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage, and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness.
    Human Molecular Genetics 06/2014; · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 3-Dimensional conditions for the culture of Bone Marrow-derived Stromal/Stem Cells (BMSCs) can be generated with scaffolds of biological origin. Cardiogel, a cardiac fibroblast-derived Extracellular Matrix (ECM) has been previously shown to promote cardiomyogenic differentiation of BMSCs and provide protection against oxidative stress. To determine the matrix composition and identify significant proteins in cardiogel, we investigated the differences in the composition of this nanomatrix and a BMSC-derived ECM scaffold, termed as 'mesogel'. An optimized protocol was developed that resulted in efficient decellularization while providing the maximum yield of ECM. The proteins were sequentially solubilized using acetic acid, Sodium Dodecyl Sulfate (SDS) and Dithiothreitol (DTT). These proteins were then analyzed using surfactant-assisted in-solution digestion followed by nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). The results of these analyses revealed significant differences in their respective compositions and 17 significant ECM/matricellular proteins were differentially identified between cardiogel and mesogel. We observed that cardiogel also promoted cell proliferation, adhesion and migration while enhancing cardiomyogenic differentiation and angiogenesis. In conclusion, we developed a reproducible method for efficient extraction and solubilization of in vitro cultured cell-derived extracellular matrix. We report several important proteins differentially identified between cardiogel and mesogel, which can explain the biological properties of cardiogel. We also demonstrated the cardiomyogenic differentiation and angiogenic potential of cardiogel even in the absence of any external growth factors. The transplantation of Bone Marrow derived Stromal/Stem Cells (BMSCs) cultured on such a nanomatrix has potential applications in regenerative therapy for Myocardial Infarction (MI).
    PLoS ONE 12/2014; 9(12):e114697. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation and accumulation of cardiac fibroblasts, which result in excessive extracellular matrix deposition and consequent mechanical stiffness, myocyte uncoupling, and ischemia, are key contributors to heart failure progression. Recently, endothelial-to-mesenchymal transition (EndoMT) and the recruitment of circulating hematopoietic progenitors to the heart have been reported to generate substantial numbers of cardiac fibroblasts in response to pressure overload-induced injury; therefore, these processes are widely considered to be promising therapeutic targets. Here, using multiple independent murine Cre lines and a collagen1a1-GFP fusion reporter, which specifically labels fibroblasts, we found that following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition. Instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardial population and a population of endothelial origin. Together, these data present a paradigm for the origins of cardiac fibroblasts during development and in fibrosis. Furthermore, these data indicate that therapeutic strategies for reducing pathogenic cardiac fibroblasts should shift from targeting presumptive EndoMT or infiltrating hematopoietically derived fibroblasts, toward common pathways upregulated in two endogenous fibroblast populations.
    Journal of Clinical Investigation 06/2014; · 13.77 Impact Factor


Available from
May 27, 2014