Article

Molecular programming of B cell memory.

Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Nature Reviews Immunology (Impact Factor: 32.25). 12/2011; 12(1):24-34. DOI: 10.1038/nri3128
Source: PubMed

ABSTRACT The development of high-affinity B cell memory is regulated through three separable phases, each involving antigen recognition by specific B cells and cognate T helper cells. Initially, antigen-primed B cells require cognate T cell help to gain entry into the germinal centre pathway to memory. Once in the germinal centre, B cells with variant B cell receptors must access antigens and present them to germinal centre T helper cells to enter long-lived memory B cell compartments. Following antigen recall, memory B cells require T cell help to proliferate and differentiate into plasma cells. A recent surge of information - resulting from dynamic B cell imaging in vivo and the elucidation of T follicular helper cell programmes - has reshaped the conceptual landscape surrounding the generation of memory B cells. In this Review, we integrate this new information about each phase of antigen-specific B cell development to describe the newly unravelled molecular dynamics of memory B cell programming.

0 Bookmarks
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination has been the most widely used strategy to protect against viral infections for centuries. However, the molecular mechanisms governing the long-term persistence of immunological memory in response to vaccines remain unclear. Here we show that autophagy has a critical role in the maintenance of memory B cells that protect against influenza virus infection. Memory B cells displayed elevated levels of basal autophagy with increased expression of genes that regulate autophagy initiation or autophagosome maturation. Mice with B cell-specific deletion of Atg7 (B/Atg7(-/-) mice) showed normal primary antibody responses after immunization against influenza but failed to generate protective secondary antibody responses when challenged with influenza viruses, resulting in high viral loads, widespread lung destruction and increased fatality. Our results suggest that autophagy is essential for the survival of virus-specific memory B cells in mice and the maintenance of protective antibody responses required to combat infections.
    Nature medicine 04/2014; · 27.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation of early B-cell precursors in the bone marrow into the variety of mature and effector B-cell subsets of the periphery is a complex process that requires tight regulation at the transcriptional level. Different members of the broad complex, tramtrack, bric-à-brac and zinc finger (BTB-ZF) family of transcription factors have recently been shown to have key roles in many phases of B-cell development, including early B-cell development in the bone marrow, peripheral B-cell maturation and specialization into effector cells during an immune response. This review highlights the critical functions mediated by BTB-ZF transcription factors within the B-cell lineage and emphasizes how the deregulation of these transcription factors can lead to B-cell malignancies.Immunology and Cell Biology advance online publication, 18 March 2014; doi:10.1038/icb.2014.20.
    Immunology and Cell Biology 03/2014; · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptional network regulating antibody-secreting cell (ASC) differentiation has been extensively studied, but our current understanding is limited. The mechanisms of action of known "master" regulators are still unclear, while the participation of new factors is being revealed. Here, we identify Zbtb20, a Bcl6 homologue, as a novel regulator of late B cell development. Within the B cell lineage, Zbtb20 is specifically expressed in B1 and germinal center B cells and peaks in long-lived bone marrow (BM) ASCs. Unlike Bcl6, an inhibitor of ASC differentiation, ectopic Zbtb20 expression in primary B cells facilitates terminal B cell differentiation to ASCs. In plasma cell lines, Zbtb20 induces cell survival and blocks cell cycle progression. Immunized Zbtb20-deficient mice exhibit curtailed humoral responses and accelerated loss of antigen-specific plasma cells, specifically from the BM pool. Strikingly, Zbtb20 induction does not require Blimp1 but depends directly on Irf4, acting at a newly identified Zbtb20 promoter in ASCs. These results identify Zbtb20 as an important player in late B cell differentiation and provide new insights into this complex process.
    Journal of Experimental Medicine 04/2014; · 13.21 Impact Factor