The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches.

Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Israel.
Current opinion in neurology (Impact Factor: 5.73). 12/2011; 25(1):86-95. DOI: 10.1097/WCO.0b013e32834ed723
Source: PubMed

ABSTRACT The exciting view of our brain as highly flexible task-based and not sensory-based raises the chances for visual rehabilitation, long considered unachievable, given adequate training in teaching the brain how to see. Recent advances in rehabilitation approaches, both noninvasive, like sensory substitution devices (SSDs) which present visual information using sound or touch, and invasive, like visual prosthesis, may potentially be used to achieve this goal, each alone, and most preferably together.
Visual impairments and said solutions are being used as a model for answering fundamental questions ranging from basic cognitive neuroscience, showing that several key visual brain areas are actually highly flexible, modality-independent and, as was recently shown, even visual experience-independent task machines, to technological and behavioral developments, allowing blind persons to 'see' using SSDs and other approaches.
SSDs can be potentially used as a research tool for assessing the brain's functional organization; as an aid for the blind in daily visual tasks; to visually train the brain prior to invasive procedures, by taking advantage of the 'visual' cortex's flexibility and task specialization even in the absence of vision; and to augment postsurgery functional vision using a unique SSD-prostheses hybrid. Taken together the reviewed results suggest a brighter future for visual neuro-rehabilitation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Music and speech are skills that require high temporal precision of motor output. A key question is how humans achieve this timing precision given the poor temporal resolution of somatosensory feedback, which is classically considered to drive motor learning. We hypothesise that auditory feedback critically contributes to learn timing, and that, similarly to visuo-spatial learning models, learning proceeds by correcting a proportion of perceived timing errors. Thirty-six participants learned to tap a sequence regularly in time. For participants in the synchronous-sound group, a tone was presented simultaneously with every keystroke. For the jittered-sound group, the tone was presented after a random delay of 10-190 msec following the keystroke, thus degrading the temporal information that the sound provided about the movement. For the mute group, no keystroke-triggered sound was presented. In line with the model predictions, participants in the synchronous-sound group were able to improve tapping regularity, whereas the jittered-sound and mute group were not. The improved tapping regularity of the synchronous-sound group also transferred to a novel sequence and was maintained when sound was subsequently removed. The present findings provide evidence that humans engage in auditory feedback error-based learning to improve movement quality (here reduce variability in sequence tapping). We thus elucidate the mechanism by which high temporal precision of movement can be achieved through sound in a way that may not be possible with less temporally precise somatosensory modalities. Furthermore, the finding that sound-supported learning generalises to novel sequences suggests potential rehabilitation applications. Copyright © 2015. Published by Elsevier B.V.
    Brain Research 02/2015; 1606. DOI:10.1016/j.brainres.2015.02.026 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Distinct preference for visual number symbols was recently discovered in the human right inferior temporal gyrus (rITG). It remains unclear how this preference emerges, what is the contribution of shape biases to its formation and whether visual processing underlies it. Here we use congenital blindness as a model for brain development without visual experience. During fMRI, we present blind subjects with shapes encoded using a novel visual-to-music sensory-substitution device (The EyeMusic). Greater activation is observed in the rITG when subjects process symbols as numbers compared with control tasks on the same symbols. Using resting-state fMRI in the blind and sighted, we further show that the areas with preference for numerals and letters exhibit distinct patterns of functional connectivity with quantity and language-processing areas, respectively. Our findings suggest that specificity in the ventral 'visual' stream can emerge independently of sensory modality and visual experience, under the influence of distinct connectivity patterns.
    Nature Communications 01/2015; 6:6026. DOI:10.1038/ncomms7026 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 70s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics.
    Brain Research 11/2014; DOI:10.1016/j.brainres.2014.11.020 · 2.83 Impact Factor


Available from
May 30, 2014