Article

Type I IFN-dependent T cell activation is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression.

Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA.
The Journal of Immunology (Impact Factor: 5.36). 12/2011; 188(2):585-93. DOI: 10.4049/jimmunol.1102550
Source: PubMed

ABSTRACT Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNαR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNαR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.

0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines play crucial roles in regulating immune homeostasis. Two important characteristics of most cytokines are pleiotropy, defined as the ability of one cytokine to exhibit diverse functionalities, and redundancy, defined as the ability of multiple cytokines to exert overlapping activities. Identifying the determinants for unique cellular responses to cytokines in the face of shared receptor usage, pleiotropy, and redundancy will be essential in order to harness the potential of cytokines as therapeutics. Here, we discuss the biophysical (ligand-receptor geometry and affinity) and cellular (receptor trafficking and intracellular abundance of signaling molecules) parameters that contribute to the specificity of cytokine bioactivities. Whereas the role of extracellular ternary complex geometry in cytokine-induced signaling is still not completely elucidated, cytokine-receptor affinity is known to impact signaling through modulation of the stability and kinetics of ternary complex formation. Receptor trafficking also plays an important and likely underappreciated role in the diversification of cytokine bioactivities but it has been challenging to experimentally probe trafficking effects. We also review recent efforts to quantify levels of intracellular signaling components, as second messenger abundance can affect cytokine-induced bioactivities both quantitatively and qualitatively. We conclude by discussing the application of protein engineering to develop therapeutically relevant cytokines with reduced pleiotropy and redirected biological functionalities.
    Advances in Immunology 01/2014; 121:1-39. DOI:10.1016/B978-0-12-800100-4.00001-5 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antigen derived from viral infections with influenza and vesicular stomatitis virus can persist after resolution of infection. Here we show that antigen can similarly persist for weeks following viral challenge and vaccination. Antigen is captured by lymphatic endothelial cells (LECs) under conditions that induce LEC proliferation. Consistent with published data showing that viral antigen persistence impacts the function of circulating memory T cells, we find that vaccine-elicited antigen persistence, found on LECs, positively influences the degree of protective immunity provided by circulating memory CD8(+) T cells. The coupling of LEC proliferation and antigen capture identifies a mechanism by which the LECs store, or 'archive', antigens for extended periods of time after antigen challenge, thereby increasing IFNγ/IL-2 production and enhancing protection against infection. These findings therefore have the potential to have an impact on future vaccination strategies and our understanding of the role for persisting antigen in both vaccine and infectious settings.
    Nature Communications 06/2014; 5:3989. DOI:10.1038/ncomms4989 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities of dendritic cells (DCs) and STAT proteins have been reported in Crohn's disease (CD). Studies on JAK/STAT signaling in DCs are, however, lacking in CD. We applied a flowcytometric single-cell-based phosphoepitope assay to evaluate STAT1 and STAT3 pathways in DC subsets from CD patients. In addition, circulating DC counts were determined, together with the activation-related immunophenotype. We found that IL-6- and IFN-α-induced STAT3 phosphorylation and IFN-α-induced STAT1 phosphorylation were impaired in plasmacytoid DCs (pDCs) from CD patients (P = 0.005, P = 0.013, and P = 0.006, respectively). In myeloid DCs (mDCs), IFN-α-induced STAT1 and STAT3 phosphorylation were attenuated (P<0.001 and P = 0.048, respectively), but IL-10-induced STAT3 phosphorylation was enhanced (P = 0.026). IFN-γ-induced STAT1 signaling was intact in both DC subtypes. Elevated plasma IL-6 levels were detected in CD (P = 0.004), which strongly correlated with disease activity (ρ = 0.690, P<0.001) but not with IL-6-induced STAT3 phosphorylation. The numbers of pDCs and BDCA3+ mDCs were decreased, and CD40 expression on CD1c+ mDCs was increased in CD. When elucidating the effect of IL-6 signaling on pDC function, we observed that IL-6 treatment of healthy donor pDCs affected the maturation of and modified the T-cell priming by pDCs, favoring Th2 over Th1 type of response and the expression of IL-10 in T cells. Our results implicate DC signaling in human CD. Reduced IL-6 responsiveness in pDCs, together with the attenuated IFN-α-induced signaling in both DC subtypes, may contribute to the immunological dysregulation in CD patients.
    PLoS ONE 08/2013; 8(8):e70738. DOI:10.1371/journal.pone.0070738 · 3.53 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
May 28, 2014