Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens.

CIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal.
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.99). 12/2011; 50(3-4):829-34. DOI: 10.1016/j.fct.2011.11.045
Source: PubMed

ABSTRACT The nutritional and antioxidant composition of four tomato Portuguese farmer' varieties widely cultivated in homegardens was determined. The analysed components included macronutrients, individual profiles of sugars and fatty acids by chromatographic techniques, hydrophilic antioxidants such as vitamin C, phenolics, flavonols and anthocyanins, and lipophilic antioxidants such as tocopherols, β-carotene and lycopene. Furthermore, the antioxidant activity was evaluated through DPPH scavenging activity, reducing power, β-carotene bleaching inhibition and TBARS formation inhibition. One of the four varieties, which is locally known as round tomato or potato tomato, proved to be the most powerful in antioxidant activity (EC50 values≤1.63 mg/ml), phenolic compounds (phenolics 31.23 mg ClAE/g extract, flavonols 6.36 mg QE/g extract and anthocyanins 3.45 mg ME/g extract) and carotenoids (β-carotene 0.51 mg/100 g and lycopene 9.49 mg/100 g), while the so-called yellow tomato variety revealed interesting nutritional composition, including higher fructose (3.42 g/100 g), glucose (3.18 g/100 g), α-linolenic acid (15.53%) and total tocopherols (1.44 mg/100 g) levels. Overall, these farmer' varieties of garden tomato cultivated in the Northeastern Portuguese region could contribute as sources of important antioxidants related to the prevention of chronic diseases associated to oxidative stress, such as cancer and coronary artery disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Myrciaria dubia, a plant native to the Amazon region, stands out as a fruit rich in vitamin C and other metabolites with nutritional potential. We evaluated the antioxidant, genotoxic and antigenotoxic potential of M. dubia juice on blood cells of mice after acute, subacute and chronic treatments. Flavonoids and vitamin C present in the fruit of M. dubia were quantified. In vitro antioxidant activity was evaluated by DPPH assay. Blood samples were collected for analysis after treatment, and the alkaline comet assay was used to analyze the genotoxic and antigenotoxic activity (ex vivo analysis using H(2)O(2)). The amount of vitamin C per 100mL of M. dubia was 52.5mg. DPPH assay showed an antioxidant potential of the fruit. No M. dubia concentration tested exerted any genotoxic effect on mice blood cells. In the ex vivo test, the juice demonstrated antigenotoxic effect, and acute treatment produced the most significant results. After the treatments, there was no evidence of toxicity or death. In conclusion, our data show that M. dubia juice has antigenotoxic and antioxidant activities, though with no genotoxicity for blood cells. Nevertheless, more in-depth studies should be conducted to assess the safety of this fruit for human consumption.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 04/2012; 50(7):2275-81. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmers' varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (Amarelo) and round (Batateiro) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long (Comprido) and heart (Coração) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 μg/g fw), including phenolic acids (43.30 μg/g fw) and flavonoids (10.93 μg/g fw). The phenolic compounds profile obtained for the studied varieties is different from other tomato varieties available in different countries, which is certainly related to genetic features, cultivation conditions, and handling and storage methods associated to each sample.
    Plant Foods for Human Nutrition 08/2012; 67(3):229-34. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracts of brown lead (Leucaena leucocephala) seed prepared using different extraction solvents were determined for antioxidative activities using different assays. The highest yield (3.4–4.0%) was obtained when water was used as an extraction solvent, compared with all ethanolic extracts used (1.2–2.0 %) (P < 0.05). Much lower chlorophyll content was found in the water extract. When hot water was used, the resulting extract contained lower total phenolic and mimosine contents (P < 0.05). In general, 60–80 % ethanolic extracts had higher 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing antioxidant power (FRAP) and metal chelating activity than water extracts (P < 0.05). When brown lead seed was dechlorophyllised prior to extraction, the water extract had slightly increased yield with lower chlorophyll content. Nevertheless, prior chlorophyll removal resulted in the increase in antioxidative activities but lower total phenolic and mimosine contents (P < 0.05). Generally, phenolic compounds and mimosine were more released when water was used as the extraction solvent, while the lower amount of chlorophyll was extracted. Oven-drying exhibited the negative effect on antioxidative activities and mimosine content. The higher antioxidative activities with concomitant higher total phenolic and mimosine contents were found in water extract dried by freeze drying. Thus, extraction solvent, dechlorophyllisation and drying methods directly influenced the yield and antioxidative activity of lead seed extract.
    Journal of Food Science and Technology -Mysore- 10/2012; · 1.12 Impact Factor