Characterizing microbial communities through space and time

Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA.
Current Opinion in Biotechnology (Impact Factor: 8.04). 06/2012; 23(3):431-6. DOI: 10.1016/j.copbio.2011.11.017
Source: PubMed

ABSTRACT Until recently, the study of microbial diversity has mainly been limited to descriptive approaches, rather than predictive model-based analyses. The development of advanced analytical tools and decreasing cost of high-throughput multi-omics technologies has made the later approach more feasible. However, consensus is lacking as to which spatial and temporal scales best facilitate understanding of the role of microbial diversity in determining both public and environmental health. Here, we review the potential for combining these new technologies with both traditional and nascent spatio-temporal analysis methods. The fusion of proper spatio-temporal sampling, combined with modern multi-omics and computational tools, will provide insight into the tracking, development and manipulation of microbial communities.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The panoply of microorganisms and other species present in our environment influence human health and disease, especially in cities, but have not been profiled with metagenomics at a city-wide scale. We sequenced DNA from surfaces across the entire New York City (NYC) subway system, the Gowanus Canal, and public parks. Nearly half of the DNA (48%) does not match any known organism; identified organisms spanned 1,688 bacterial, viral, archaeal, and eukaryotic taxa, which were enriched for harmless genera associated with skin (e.g., Acinetobacter). Predicted ancestry of human DNA left on subway surfaces can recapitulate U.S. Census demographic data, and bacterial signatures can reveal a station’s history, such as marine-associated bacteria in a hurricane-flooded station. Some evidence of pathogens was found (Bacillus anthracis), but a lack of reported cases in NYC suggests that the pathogens represent a normal, urban microbiome. This baseline metagenomic map of NYC could help long-term disease surveillance, bioterrorism threat mitigation, and health management in the built environment of cities.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial communities play important roles in health, industrial applications and earth's ecosystems. With current molecular techniques we can characterize these systems in unprecedented detail. However, such methods provide little mechanistic insight into how the genetic properties and the dynamic couplings between individual microorganisms give rise to their dynamic activities. Neither do they give insight into what we call "the community state", that is the fluxes and concentrations of nutrients within the community. This knowledge is a prerequisite for rational control and intervention in microbial communities. Therefore, the inference of the community structure from experimental data is a major current challenge. We will argue that this inference problem requires mathematical models that can integrate heterogeneous experimental data with existing knowledge. We propose that two types of models are needed. Firstly, mathematical models that integrate existing genomic, physiological, and physicochemical information with metagenomics data so as to maximize information content and predictive power. This can be achieved with the use of constraint-based genome-scale stoichiometric modeling of community metabolism which is ideally suited for this purpose. Next, we propose a simpler coarse-grained model, which is tailored to solve the inference problem from the experimental data. This model unambiguously relate to the more detailed genome-scale stoichiometric models which act as heterogeneous data integrators. The simpler inference models are, in our opinion, key to understanding microbial ecosystems, yet until now, have received remarkably little attention. This has led to the situation where the modeling of microbial communities, using only genome-scale models is currently more a computational, theoretical exercise than a method useful to the experimentalist.
    Frontiers in Microbiology 01/2015; 6:213. DOI:10.3389/fmicb.2015.00213 · 3.94 Impact Factor
  • Source
    Acta Geologica Sinica 12/2014; 88(s1). DOI:10.1111/1755-6724.12266_5 · 1.25 Impact Factor


Available from
Dec 15, 2014