Response patterns to bronchodilator and quantitative computed tomography in chronic obstructive pulmonary disease.

Department of Pulmonary and Critical Care Medicine, Asthma Center and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
Clinical Physiology and Functional Imaging (Impact Factor: 1.33). 01/2012; 32(1):12-8. DOI: 10.1111/j.1475-097X.2011.01046.x
Source: PubMed

ABSTRACT Patients with chronic obstructive pulmonary disease (COPD) show different spirometric response patterns to bronchodilator, such that some patients show improvement principally in expiratory flow (forced expiratory volume in 1 s; FEV(1)), whereas others respond by improvement of lung volume (forced vital capacity; FVC). The mechanisms of these different response patterns to bronchodilator remain unclear. We investigated the associations between bronchodilator responsiveness and quantitative computed tomography (CT) indices in patients with COPD.
Data on a total of 101 patients with stable COPD were retrospectively analysed. Volume and flow responses to bronchodilator were assessed by FVC and FEV(1) changes before and after inhalation of salbutamol (400 μg). Volumetric CT was performed to quantify emphysema, air trapping and large airway thickness. Emphysema was assessed by the volume fraction of the lung under -950 Hounsfield units (HU; V(950)) at full inspiration and air trapping by the ratio of mean lung density (MLD) at full expiration and inspiration. Airway wall thickness and wall area percentage (WA%; defined as wall area/[wall area + lumen area] × 100), were measured near the origin of right apical and left apico-posterior bronchus.
Among quantitative CT indices, the CT emphysema index (V(950 insp)) showed a significant negative correlation with postbronchodilator FEV(1) change (R = -0·213, P = 0·004), and the CT air-trapping index correlated positively with postbronchodilator FVC change(R = 0·286, P≤0·001). Multiple linear regression analysis showed that CT emphysema index had independent association with postbronchodilator FEV(1) change and CT air-trapping index with postbronchodilator FVC change.
The degrees of emphysema and air trapping may contribute to the different response patterns to bronchodilator in patients with COPD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: In patients with chronic obstructive pulmonary disease (COPD), multidetector-row computed tomography (MDCT) showed that tiotropium dilated the inner diameters in airways from the third to the sixth generation of the bronchi. Here we aimed to evaluate the morphological effect by adding a budesonide/formoterol combination to tiotropium in COPD patients using three-dimensional MDCT. METHODS: Pulmonary function tests, St. George's Respiratory Questionnaire (SGRQ) and MDCT imaging studies were performed at the beginning and after budesonide/formoterol combination treatment for 12 weeks in 14 patients with COPD. RESULTS: The median age was 73.5 years and the mean forced expiratory volume in 1 second (FEV(1)) as a percentage of the predicted value was 57.2 ± 18.3 %. The luminal area in the fifth generation bronchi and the emphysema volume/CT-derived total lung volume were significantly correlated with FEV(1) at baseline (r = 0.682, p < 0.02 and r = -0.868, p < 0.001, respectively). The average luminal area and wall area percentage in the third, fourth and fifth generations were correlated with the SGRQ total score. Budesonide/formoterol induced insignificant pulmonary function changes and significant symptoms improvement. CT images showed an increased inner luminal area and decreased wall area after budesonide/formoterol treatment. Average luminal area was significantly increased from 24.3 ± 9.7 to 26.0 ± 9.9 mm(2) in the third generation, 13.0 ± 6.5 to 14.7 ± 7.3 mm(2) in the fourth generation, 8.0 ± 4.8 to 9.4 ± 4.9 mm(2) in the fifth generation and 5.6 ± 2.7 to 6.7 ± 3.6 mm(2) in the sixth generation (p<0.01). The average increase of the third generation luminal area was correlated with the FEV(1) increase (r = 0.632, p < 0.03). The wall area percentage significantly decreased from 51.5 ± 9.2 to 49.1 ± 9.7 in the third generation, 56.1 ± 9.7 to 53.0 ± 11.1 in the fourth generation, and 62.3 ± 9.9 to 57.6 ± 9.8 in the fifth generation (p<0.05). Emphysema volume/CT-derived total lung volume was unchanged with treatment. CONCLUSION: MDCT demonstrated budesonide/formoterol-induced bronchodilation in the non-small airway. CT imaging can evaluate drug therapeutic effect and may provide additional insights into pharmacotherapy for COPD.
    Pulmonary Pharmacology &amp Therapeutics 01/2013; · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To investigate the collapsibility of the lung and individual lobes in patients with COPD during inspiration/expiration and assess the association of whole lung and lobar volume changes with pulmonary function tests (PFTs) and disease severity. METHODS: PFT measures used were RV/TLC%, FEV1% predicted, FVC, FEV1/FVC%, DLco% predicted and GOLD category. A total of 360 paired inspiratory and expiratory CT examinations acquired in 180 subjects were analysed. Automated computerised algorithms were used to compute individual lobe and total lung volumes. Lung volume collapsibility was assessed quantitatively using the simple difference between CT computed inspiration (I) and expiration (E) volumes (I-E), and a relative measure of volume changes, (I-E)/I. RESULTS: Mean absolute collapsibility (I-E) decreased in all lung lobes with increasing disease severity defined by GOLD classification. Relative collapsibility (I-E)/I showed a similar trend. Upper lobes had lower volume collapsibility across all GOLD categories and lower lobes collectively had the largest volume collapsibility. Whole lung and left lower lobe collapsibility measures tended to have the highest correlations with PFT measures. Collapsibility of lung lobes and whole lung was also negatively correlated with the degree of air trapping between expiration and inspiration, as measured by mean lung density. All measured associations were statistically significant (P < 0.01). CONCLUSION: Severity of COPD appears associated with increased collapsibility in the upper lobes, but change (decline) in collapsibility is faster in the lower lobes. KEY POINTS : • Inspiratory and expiratory computed tomography allows assessment of lung collapsibility • Lobe volume collapsibility is significantly correlated with measures of lung function. • As COPD severity increases, collapsibility of individual lung lobes decreases. • Upper lobes exhibit more severe disease, while lower lobes decline faster.
    European Radiology 03/2013; · 4.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract It is not known how airway structure is altered during real-life acute asthma exacerbations. The aim of this study was to examine changes in airway structure during acute asthma exacerbations and at convalescence by using lung-volume controlled high resolution computerised tomography (HRCT). Eight subjects with acute asthma exacerbation admitted to hospital were recruited. HRCT was performed within 72 hours of admission (n=8) and repeated after 8 weeks of convalescence (n=7). Individual airways were carefully matched on acute and convalescent CT data sets for comparisons of airway parameters. A novel methodology was employed for standardisation of lung volumes to permit valid comparisons of lung imaging. Measurements of bronchial cross sectional airway area (Aa) and bronchial luminal area (Ai) for each matched airway were obtained using a validated program. The airway wall thickness was analysed as wall area (WA) calculated as a percentage: WA% = WA/Aa x 100. Wilcoxon signed-rank testing was used to compare acute and convalescent asthma and Spearman's correlation to examine associations. Airway lumen (Ai) areas were similar in both acute and stable asthma phases (6.6±3.1mm(2) vs.7.2±3.8 mm(2) p=0.8). However, the airway wall was significantly thickened during acute asthma exacerbations compared to convalescence (62±4% vs. 55±7%; p=0.01). There was no correlation between airway structure dimensions and lung function measurements. This is the first study to demonstrate an increase in airway wall thickness during real-life acute asthma exacerbation. However, narrowing of the airway lumen area was variable and will require larger studies able to detect small differences. These results suggest that airway wall thickening linked to mucosal inflammation is likely to characterise acute asthma in vivo but that changes in the airway lumen accompanying bronchoconstriction may be more heterogeneous.
    Journal of Asthma 11/2013; · 1.85 Impact Factor


Available from
May 29, 2014