Article

Neural degeneration in the retina of the streptozotocin-induced type 1 diabetes model.

Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan.
Experimental Diabetes Research (Impact Factor: 1.89). 01/2011; 2011:108328. DOI: 10.1155/2011/108328
Source: PubMed

ABSTRACT Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis.

0 Bookmarks
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To test the hypothesis that increased expression of proinflammatory cytokine high-mobility group box-1 (HMGB1) in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in retinas of diabetic rats plays a pathogenetic role in mediating diabetes-induced retinal neuropathy. Retinas of 1-month diabetic rats and HMGB1 intravitreally injected normal rats were studied using Western blot analysis, RT-PCR and glutamate assay. In addition, we studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina. Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of HMGB1 protein and mRNA, activated extracellular signal-regulated kinase 1 and 2 (ERK1/2), cleaved caspase-3 and glutamate; and significant downregulation of synaptophysin, tyrosine hydroxylase, glutamine synthetase, and glyoxalase 1. Constant glycyrrhizin intake from the onset of diabetes did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of HMGB1 protein and mRNA, activated ERK1/2, cleaved caspase-3, and glutamate. In the glycyrrhizin-fed diabetic rats, the decrease in synaptophysin, tyrosine hydroxylase, and glyoxalase 1 caused by diabetes was significantly attenuated. These findings suggest that early retinal neuropathy of diabetes involves upregulated expression of HMGB1 and can be ameliorated by inhibition of HMGB1.
    Mediators of Inflammation 01/2014; 2014:746415. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neurodegeneration is a key component of diabetic retinopathy (DR), although the detailed neuronal damage remains ill-defined. Recent evidence suggests that in addition to amacrine and ganglion cell, diabetes may also impact on other retinal neurons. In this study, we examined retinal degenerative changes in Ins2Akita diabetic mice. In scotopic electroretinograms (ERG), b-wave and oscillatory potentials were severely impaired in 9-month old Ins2Akita mice. Despite no obvious pathology in fundoscopic examination, optical coherence tomography (OCT) revealed a progressive thinning of the retina from 3 months onwards. Cone but not rod photoreceptor loss was observed in 3-month-old diabetic mice. Severe impairment of synaptic connectivity at the outer plexiform layer (OPL) was detected in 9-month old Ins2Akita mice. Specifically, photoreceptor presynaptic ribbons were reduced by 25% and postsynaptic boutons by 70%, although the density of horizontal, rod- and cone-bipolar cells remained similar to non-diabetic controls. Significant reductions in GABAergic and glycinergic amacrine cells and Brn3a+ retinal ganglion cells were also observed in 9-month old Ins2Akita mice. In conclusion, the Ins2Akita mouse develops cone photoreceptor degeneration and the impairment of synaptic connectivity at the OPL, predominately resulting from the loss of postsynaptic terminal boutons. Our findings suggest that the Ins2Akita mouse is a good model to study diabetic retinal neuropathy.
    PLoS ONE 01/2014; 9(5):e97970. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin receptor substrate-2 (Irs2) mediates peripheral insulin action and is essential for retinal health. Previous investigations have reported severe photoreceptor degeneration and abnormal visual function in Irs2-deficient mice. However, molecular changes in the Irs2-/- mouse retina have not been described. In this study, we examined retinal degenerative changes in neuronal and glial cells of adult (9- and 12-week old) Irs2-/- mice by immunohistochemistry. 9-week old Irs2-/- mice showed significant thinning of outer retinal layers, concomitant to Müller and microglial cell activation. Photoreceptor cells displayed different signs of degeneration, such as outer/inner segment atrophy, redistribution of rod- and cone-opsins and spatial disorganization of cone cells. This was accompanied by synaptic changes at the outer plexiform layer, including the retraction of rod-spherules, reduction of photoreceptor synaptic ribbons and synaptic remodeling in second order neurons (i.e. loss and sprouting of dendritic processes in rod bipolar and horizontal cells). By 12 weeks of age, the thickness of inner retinal layers was severely affected. Although inner plexiform layer stratification remained unchanged at this stage, rod bipolar cell axon terminals were significantly depleted. Significant loss of Brn3a+ retinal ganglion cells occurred in 12-week old Irs2-/- mice, in contrast to younger ages. Adult Irs2-/- mice showed clear hallmarks of neurodegeneration and disruption of the inner retina with increasing age. Pharmacological stimulation of Irs2 signaling pathway may provide additional neuroprotection in certain degenerative retinopathies.
    Experimental Eye Research 01/2014; · 3.03 Impact Factor

Full-text (2 Sources)

View
6 Downloads
Available from
Jul 10, 2014