Article

Neural Degeneration in the Retina of the Streptozotocin-Induced Type 1 Diabetes Model

Laboratory of Retinal Cell Biology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan.
Experimental Diabetes Research (Impact Factor: 3.54). 11/2011; 2011:108328. DOI: 10.1155/2011/108328
Source: PubMed

ABSTRACT Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis.

0 Followers
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental models of diabetic retinopathy (DR) have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight.
    01/2015; 2015:1-16. DOI:10.1155/2015/364924
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus is a real pandemic of the modern world and the incidence of the disease is increasing at a tremendous rate with a number of complications involving major systems of the human body. The renin angiotensin system (RAS) is considered to be involved in most of the pathological processes that result in diabetic nephropathy and retinopathy. The study was designed to evaluate and compare effects of ramipril (angiotensin-converting enzyme inhibitor-ACEI) and telmisartan (angiotensin II receptor blocker - ARBs) combinations on the progression of retinopathy and nephropathy in the streptozotocin (STZ) induced diabetic model. Diabetic state in rats was induced by chemical method using STZ 55 mg/kg intraperitoneally. Diabetic renal tubulopathy and interstitial inflammatory changes were done. Diabetic retinopathy manifested in the form of vacuolar changes in the inner plexiform and the ganglionic layers of the retina was observed. Treatments with ACEI and ARBs reduced the incidence of the occurrence of cataract. The effect of combinational drugs of ACEI (ramipril) and AT1 receptor blocker (Telmisartan) was evaluated. The drugs used in combinations showed improvement in the histopathological and biochemical changes of the diabetic animals, both for the retina and kidney. The efficacy of the drugs suggests a pivotal role of the local RAS system in the pathogenesis of tubulopathy in the kidney and neuronal damage in the retina of the diabetic animals.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic retinopathy is the major ocular complication associated with diabetes, and represents the leading cause of legal blindness in the working-age population of developed countries. Although classically diagnosed based on abnormalities of the retinal microvasculature, diabetic retinopathy is now widely recognized as a neurovascular disease. While all patients with diabetes are at increased risk for eye disease including diabetic retinopathy, proactive measures, and timely intervention can prevent or delay subsequent vision loss. Systemic management of diabetes by combined control of glycemia, blood pressure, and serum lipid levels remains the most important method of preventing diabetic retinopathy onset and progression. Once detected, surgical and medical interventions including photocoagulation, vitrectomy, and intravitral drug injection can help preserve vision. However, the need for improved detection methods and therapies that will allow earlier diagnosis and treatment remains apparent. This review summarizes current techniques for the prevention and intervention for diabetic retinopathy, and examines ongoing developments in the search for new endpoints and therapies as they apply to preventing vision loss associated with diabetes.

Full-text (2 Sources)

Download
21 Downloads
Available from
Jul 10, 2014