Identification of a Genomic Reservoir for New TRIM Genes in Primate Genomes

Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.
PLoS Genetics (Impact Factor: 8.17). 12/2011; 7(12):e1002388. DOI: 10.1371/journal.pgen.1002388
Source: PubMed

ABSTRACT Tripartite Motif (TRIM) ubiquitin ligases act in the innate immune response against viruses. One of the best characterized members of this family, TRIM5α, serves as a potent retroviral restriction factor with activity against HIV. Here, we characterize what are likely to be the youngest TRIM genes in the human genome. For instance, we have identified 11 TRIM genes that are specific to humans and African apes (chimpanzees, bonobos, and gorillas) and another 7 that are human-specific. Many of these young genes have never been described, and their identification brings the total number of known human TRIM genes to approximately 100. These genes were acquired through segmental duplications, most of which originated from a single locus on chromosome 11. Another polymorphic duplication of this locus has resulted in these genes being copy number variable within the human population, with a Han Chinese woman identified as having 12 additional copies of these TRIM genes compared to other individuals screened in this study. Recently, this locus was annotated as one of 34 "hotspot" regions that are also copy number variable in the genomes of chimpanzees and rhesus macaques. Most of the young TRIM genes originating from this locus are expressed, spliced, and contain signatures of positive natural selection in regions known to determine virus recognition in TRIM5α. However, we find that they do not restrict the same retroviruses as TRIM5α, consistent with the high degree of divergence observed in the regions that control target specificity. We propose that this recombinationally volatile locus serves as a reservoir from which new TRIM genes arise through segmental duplication, allowing primates to continually acquire new antiviral genes that can be selected to target new and evolving pathogens.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Focal adhesions (FAs) are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of FAs is critical for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating FA dynamics. Here, we identify TRIM15, a member of the TRIpartite Motif protein family, as a paxillin-interacting factor and a component of FAs. TRIM15 localizes to focal contacts in a myosin II-independent manner by an interaction between its coiled coil domain and the LD2 motif of paxillin. Unlike other FA proteins, TRIM15 is a stable FA component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and FA disassembly rates in addition to enlarged FAs. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of FA turnover and cell migration.
    Development 07/2014; 127(18). DOI:10.1242/jcs.143537 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity. One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions. ß 2014 Published by Elsevier Ltd. Abbreviations: 5 0 ppp-RNA, 5 0 -triphosphate RNA; AIM2, Absent in melanoma 2; ASC, apoptosis-associated speck-like protein containing a CARD; CARD, caspase activation and recruitment domain. of Pages 14 Please cite this article in press as: Versteeg GA, et al. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev (2014),
    Cytokine & Growth Factor Reviews 08/2014; DOI:10.1016/j.cytogfr.2014.08.001 · 6.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (∼30 Mya) and the emergence of SERPINB3 in Homininae (∼9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1. A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents. Finally, similar patterns of expression and the sharing of many regulatory motifs suggest neofunctionalization as the best fitted model of the functional divergence of SERPINB3 and B4 duplicates.
    PLoS ONE 08/2014; 9(8):e104935. DOI:10.1371/journal.pone.0104935 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014