Hedgehog signalling in gut development, physiology and cancer.

Internal Medicine, 109 Zina Pitcher PL, BSRB, 2051, University of Michigan, Ann Arbor, MI 48105-2200, USA.
The Journal of Physiology (Impact Factor: 4.38). 12/2011; 590(Pt 3):421-32. DOI: 10.1113/jphysiol.2011.220681
Source: PubMed

ABSTRACT The Hedgehog pathway is one of the most common signal transduction pathways used by mammalian cells. Most studies have focused on its role during development, primarily of the nervous system, skin, bone and pancreas. Due to the activation of this pathway during proliferation and neoplastic transformation, more recent studies have examined its role in adult tissues. Significant levels of sonic hedgehog are expressed in the gastric mucosa, which has served to direct analysis of its role during organogenesis, gastric acid secretion and neoplastic transformation. Therefore the goal of this review is to apply current knowledge of this pathway to further our understanding of gastrointestinal physiology and neoplasia, using the stomach as a prototype.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have indicated that Hedgehog signaling is essential for gastric cancer development, but its precise role is still unclear. The aim of this study was to clarify the role of Hedgehog signaling in gastric cancer development. The expression of key Hedgehog signaling components in clinical samples of sequential gastric cancer stages was assessed by immunohistochemistry. The roles and regulatory mechanisms of Hedgehog signaling in human gastric cancer cells and normal gastric epithelial cells were investigated using multiple cell biological approaches and cDNA microarray analyses. Hedgehog signaling was found to be abnormally activated in a ligand-independent manner during gastric cancer development. Gli1 over-expression and reduced SuFu expression were found to be typical events in gastric cancer tissues. Gli1 over-expression was found to correlate with a poorly differentiated histology, advanced clinical stage, membrane serosa infiltration and lymph node metastasis in patients with gastric cancer. Data obtained from multiple cell biological assays showed that human gastric cancer cells require active Hedgehog signaling for survival, proliferation, migration and colony formation. N-Shh treatment significantly enhanced the migration, invasion and colony formation of gastric cancer cells. Moreover, the results of cDNA microarray analyses indicated that after treatment with cyclopamine or GANT61 (inhibitors of Hedgehog signaling), differentially expressed genes in gastric cancer cells were enriched in the apoptosis and MAPK pathways. Inhibitors of the Hedgehog pathway were found to suppress gastric cancer cell growth via apoptosis induction. Our findings indicate a vital role of the activated Hedgehog signaling pathway in promoting gastric initiation and progression. The Hedgehog signaling pathway may serve as a target for gastric cancer therapy.
    Cellular oncology (Dordrecht). 09/2013; 36(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant activation of the Hedgehog (Hh) pathway has been reported in several malignancies. We previously demonstrated that knockdown of GLI2 inhibited proliferation of osteosarcoma cells through regulation of the cell cycle. In this study, we analyzed the function of GLI2 in the pathogenesis of osteosarcoma metastasis. Immunohistochemical studies showed that GLI2 was overexpressed in patient osteosarcoma specimens. Knockdown of GLI2 inhibited migration and invasion of osteosarcoma cells. In contrast, the forced expression of constitutively active GLI2 in mesenchymal stem cells promoted invasion. In addition, xenograft models showed that knockdown of GLI2 decreased lung metastasis of osteosarcomas. To examine clinical applications, we evaluated the efficacy of arsenic trioxide (ATO), which is a Food and Drug Administration-approved antitumor drug, on osteosarcoma cells. ATO treatment suppressed the invasiveness of osteosarcoma cells by inhibiting the transcriptional activity of GLI2. In addition, the combination of Hh inhibitors including ATO, vismodegib, and GANT61 prevented migration and metastasis of osteosarcoma cells. Consequently, our findings suggested that GLI2 regulated metastasis as well as the progression of osteosarcomas. Inhibition of the GLI2 transcription may be an effective therapeutic method for preventing osteosarcoma metastasis. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 08/2014; 136(6). · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer (GC) remains one of the most common cancers worldwide. Its prevalence is still on the rise in the developing countries due to the ageing population. The cancer stem cell (CSC) theory provides a new insight into the interpretation of tumor initiation, aggressive growth, recurrence, and metastasis of cancer, as well as the development of new strategies for cancer treatment. This review will focus on the progress of biomarkers and signaling pathways of CSCs, the complex crosstalk networks between the microenvironment and CSCs, and the development of therapeutic approaches against CSCs, predominantly focusing on GC.
    Journal of Gastroenterology 07/2012; 48(7). · 4.02 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014