Article

Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains.

Department of Physiology, University of California, San Francisco, CA 94158, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2011; 108(51):20615-20. DOI: 10.1073/pnas.1118595109
Source: PubMed

ABSTRACT Intermediate neural progenitor (INP) cells are transient amplifying neurogenic precursor cells generated from neural stem cells. Amplification of INPs significantly increases the number of neurons and glia produced from neural stem cells. In Drosophila larval brains, INPs are produced from type II neuroblasts (NBs, Drosophila neural stem cells), which lack the proneural protein Asense (Ase) but not from Ase-expressing type I NBs. To date, little is known about how Ase is suppressed in type II NBs and how the generation of INPs is controlled. Here we show that one isoform of the Ets transcription factor Pointed (Pnt), PntP1, is specifically expressed in type II NBs, immature INPs, and newly mature INPs in type II NB lineages. Partial loss of PntP1 in genetic mosaic clones or ectopic expression of the Pnt antagonist Yan, an Ets family transcriptional repressor, results in a reduction or elimination of INPs and ectopic expression of Ase in type II NBs. Conversely, ectopic expression of PntP1 in type I NBs suppresses Ase expression the NB and induces ectopic INP-like cells in a process that depends on the activity of the tumor suppressor Brain tumor. Our findings suggest that PntP1 is both necessary and sufficient for the suppression of Ase in type II NBs and the generation of INPs in Drosophila larval brains.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumor-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate asymmetric cell division (ACD). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumor formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in asymmetric cell division in mammalian systems may play significant roles in the series of pathogenic events leading to the development of brain cancers.
    Bioscience Reports 06/2014; 34(4). DOI:10.1042/BSR20140008 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. Here we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit ofDrosophila INPs.
    eLife Sciences 10/2014; 3. DOI:10.7554/eLife.03596 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the developing fruit fly brain, a protein called Trithorax increases the number of neural cells produced from a single stem cell, in part by regulating the transcription of the target genes buttonhead and pointed.
    eLife Sciences 11/2014; 3. DOI:10.7554/eLife.05000 · 8.52 Impact Factor

Preview

Download
0 Downloads
Available from