Article

Gene therapy for retinitis pigmentosa caused by MFRP mutations: human phenotype and preliminary proof of concept.

Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
Human gene therapy (Impact Factor: 3.62). 12/2011; 23(4):367-76. DOI: 10.1089/hum.2011.169
Source: PubMed

ABSTRACT Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy.

Download full-text

Full-text

Available from: Artur Cideciyan, Jul 04, 2015
0 Followers
 · 
208 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.
    Molecular vision 10/2012; 18:2479-96.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signalling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
    Progress in Retinal and Eye Research 11/2012; 33. DOI:10.1016/j.preteyeres.2012.10.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy strategies for the treatment of inherited retinal diseases have made major advances in recent years. This review focuses on adeno-associated viral (AAV) vector approaches to treat retinal degeneration and, thus, prevent or delay the onset of blindness. Data from human clinical trials of gene therapy for retinal disease show encouraging signs of safety and efficacy from AAV vectors. Recent progress in enhancing cell-specific targeting and transduction efficiency of the various retinal layers plus the use of AAV-delivered growth factors to augment the therapeutic effect and limit cell death suggest even greater success in future human trials is possible.
    01/2013; DOI:10.1016/j.trsl.2012.12.007