Gene therapy for retinitis pigmentosa caused by MFRP mutations: human phenotype and preliminary proof of concept.

Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
Human gene therapy (Impact Factor: 4.2). 12/2011; 23(4):367-76. DOI: 10.1089/hum.2011.169
Source: PubMed

ABSTRACT Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Defects in Membrane Frizzled-related Protein (MFRP) cause autosomal recessive retinitis pigmentosa (RP). MFRP codes for a retinal pigment epithelium (RPE)-specific membrane receptor of unknown function. In patient-specific induced pluripotent stem (iPS)-derived RPE cells, precise levels of MFRP, and its dicistronic partner CTRP5, are critical to the regulation of actin organization. Overexpression of CTRP5 in naïve human RPE cells phenocopied behavior of MFRP-deficient patient RPE (iPS-RPE) cells. AAV8 (Y733F) vector expressing human MFRP rescued the actin disorganization phenotype and restored apical microvilli in patient-specific iPS-RPE cell lines. As a result, AAV-treated MFRP mutant iPS-RPE recovered pigmentation and transepithelial resistance. The efficacy of AAV-mediated gene therapy was also evaluated in Mfrp(rd6)/Mfrp(rd6) mice-an established preclinical model of RP-and long-term improvement in visual function was observed in AAV-Mfrp treated mice. This report is the first to indicate the successful use of human iPS-RPE cells as a recipient for gene therapy. The observed favorable response to gene therapy in both patient-specific cell lines and the Mfrp(rd6)/Mfrp(rd6) preclinical model suggests that this form of degeneration caused by MFRP mutations is a potential target for interventional trials.Molecular Therapy (2014); doi:10.1038/mt.2014.100.
    Molecular therapy : the journal of the American Society of Gene Therapy. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: We present a genetic and clinical analysis of two sisters, 3 and 4 years of age, with nanophthalmos and macular folds. Methods: Ophthalmological examination, general paediatric examination and molecular genetic analysis of the MFRP gene were performed in both affected siblings. Results: Clinical analysis showed high hyperopia (+11 D and +12 D), short axial lengths (15 mm) and the presence of macular folds and optic nerve head drusen. Autofluorescence of the retina was generally normal with subtle macular abnormalities. Sequence analysis showed compound heterozygosity for severe MFRP mutations in both sisters: a previously reported p.Asn167fs (c.498dupC) and a novel stop codon mutation p.Gln91X (c.271C>T). Conclusion: These are the youngest nanophthalmos patients in the literature identified with severe loss of MFRP function, showing already the known structural abnormalities for this disease. Adult patients affected by homozygous or compound heterozygous MFRP mutations generally show signs of retinal dystrophy, with ERG disturbances and RPE abnormalities on autofluorescence imaging. ERG examination could not be performed in these children, but extensive RPE abnormalities were not seen at this young age.
    Acta ophthalmologica 06/2013; · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
    Progress in Retinal and Eye Research 01/2014; · 9.44 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014