Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

New York Blood Center, United States of America
PLoS Neglected Tropical Diseases (Impact Factor: 4.49). 11/2011; 5(11):e1411. DOI: 10.1371/journal.pntd.0001411
Source: PubMed

ABSTRACT The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection.

The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286).

Download full-text


Available from: Christian Gloeckner, Jul 08, 2015
    • "A notable wolbachial protein FtsZ, an analog of eukaryotic β-tubulin which is expressed in all developmental stages of B. malayi, is a GTPase, thereby making the protein an attractive drug target. Recently, berberine as a small molecule inhibitor and a natural drug identified from a highthroughput screen has been used to inhibit GTPase activity of FtsZ for combating filarial infections (Li et al. 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 2 billion people are infected with helminth parasites across the globe. The burgeoning drug resistance against current anthelmintics in parasitic worms of humans and livestock requires urgent attention to tackle these recalcitrant worms. This review focuses on the advancements made in the area of helminth drug target discovery especially from the last few couple of decades. It highlights various approaches made in this field and enlists the potential drug targets currently being pursued to target economically important helminth species both from human as well as livestock to combat disease pathology of schistosomiasis, onchocerciasis, lymphatic filariasis, and other important macroparasitic diseases. Research in the helminths study is trending to identify potential and druggable targets through genomic, proteomic, biochemical, biophysical, in vitro experiments, and in vivo experiments in animal models. The availability of major helminths genome sequences and the subsequent availability of genome-scale functional datasets through in silico search and prioritization are expected to guide the experimental work necessary for target-based drug discovery. Organized and documented list of drug targets from various helminths of economic importance have been systematically covered in this review for further exploring their use and applications, which can give physicians and veterinarians effective drugs in hand to enable them control worm infections.
    Parasitology Research 03/2013; DOI:10.1007/s00436-013-3383-6 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9-Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.-Godel, C., Kumar, S., Koutsovoulos, G., Ludin, P., Nilsson, D., Comandatore, F., Wrobel, N., Thompson, M., Schmid, C. D., Goto, S., Bringaud, F., Wolstenholme, A., Bandi, C., Epe, C., Kaminsky, R., Blaxter, M., Mäser, P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets.
    The FASEB Journal 08/2012; 26(11). DOI:10.1096/fj.12-205096 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.
    PLoS Pathogens 09/2012; 8(9):e1002922. DOI:10.1371/journal.ppat.1002922 · 8.06 Impact Factor