Article

Indoxyl sulphate inhibits osteoclast differentiation and function.

INSERM ERI-12, EA4292, Amiens, France.
Nephrology Dialysis Transplantation (Impact Factor: 3.37). 12/2011; 27(6):2176-81. DOI: 10.1093/ndt/gfr647
Source: PubMed

ABSTRACT Patients with chronic kidney disease (CKD) develop various bone abnormalities characterized by impaired bone remodelling. Recent data suggest that accumulation of the uraemic toxin indoxyl sulphate (IS) may be one of the factors involved in bone abnormalities in CKD patients. Indeed, it was recently reported that IS induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. However, it is not yet known whether IS also affects osteoclast cells.
In the present study, we assessed the direct effect of IS at uraemic concentrations and in the presence (to reach the 3 mM concentration) or absence of added inorganic phosphate (Pi) on osteoclast (OCL) differentiation and bone-resorbing activity in two well-established cellular models of monocyte/macrophage (peripheral blood mononuclear cells and the RAW 264.7 cell line).
We found that IS inhibits both OCL differentiation and bone-resorbing activity in a dose-dependent manner and that these effects were enhanced in the presence of Pi at 3mM concentration. IS induced a gradual inhibition of JNK, Akt, p38, ERK1/2 phosphorylation and AP-1 DNA-binding activity. The effects of IS on OCL differentiation and AP-1 were prevented by probenecid, a competitive inhibitor of organic anion transporters, suggesting that IS's effects occur subsequently to its intake.
Our findings strongly suggest that IS not only inhibits osteoblast function but also has an inhibitory effect on OCL function and thus could affect bone remodelling in CKD patients.

0 Bookmarks
 · 
193 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein binding prevents uremic toxins from removal by conventional extracorporeal therapies leading to accumulation in maintenance dialysis patients. Weakening of the protein binding may enhance the dialytic elimination of these toxins. In ultrafiltration and equilibrium dialysis experiments, different measures to modify the plasma binding affinity and capacity were tested: (i), increasing the sodium chloride (NaCl) concentration to achieve a higher ionic strength; (ii), increasing the temperature; and (iii), dilution. The effects on the dissociation constant KD and the protein bound fraction of the prototypical uremic toxin indoxyl sulfate (IS) in plasma of healthy and uremic individuals were studied. Binding of IS corresponded to one site binding in normal plasma. KD increased linearly with the NaCl concentration between 0.15 (KD = 13.2 ± 3.7 µM) and 0.75 M (KD = 56.2 ± 2.0 µM). Plasma dilution further reduced the protein bound toxin fraction by lowering the protein binding capacity of the plasma. Higher temperatures also decreased the protein bound fraction of IS in human plasma. Increasing the NaCl concentration was effective to weaken the binding of IS also in uremic plasma: the protein bound fraction decreased from 89% ± 3% to 81% ± 3% at 0.15 and 0.75 M NaCl, respectively. Dilution and increasing the ionic strength and temperature enhance the free fraction of IS allowing better removal of the substance during dialysis. Applied during clinical dialysis, this may have beneficial effects on the long-term outcome of maintenance dialysis patients.
    Toxins 01/2014; 6(2):416-30. · 2.13 Impact Factor
  • Source
    Jornal Brasileiro de Nefrologia 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many small solutes excreted by the kidney are bound to plasma proteins, chiefly albumin, in the circulation. The combination of protein binding and tubular secretion allows the kidney to reduce the free, unbound concentrations of such solutes to lower levels than could be obtained by tubular secretion alone. Protein-bound solutes accumulate in the plasma when the kidneys fail, and the free, unbound levels of these solutes increase more than their total plasma levels owing to competition for binding sites on plasma proteins. Given the efficiency by which the kidney can clear protein-bound solutes, it is tempting to speculate that some compounds in this class are important uremic toxins. Studies to date have focused largely on two specific protein-bound solutes: indoxyl sulfate and p-cresyl sulfate. The largest body of evidence suggests that both of these compounds contribute to cardiovascular disease, and that indoxyl sulfate contributes to the progression of chronic kidney disease. Other protein-bound solutes have been investigated to a much lesser extent, and could in the future prove to be even more important uremic toxins.
    Seminars in Nephrology 03/2014; 34(2):106-117. · 2.83 Impact Factor

Full-text

View
59 Downloads
Available from
May 31, 2014