Oncogenic Ras Regulates BRIP1 Expression to Induce Dissociation of BRCA1 from Chromatin, Inhibit DNA Repair, and Promote Senescence

Women's Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
Developmental Cell (Impact Factor: 9.71). 11/2011; 21(6):1077-91. DOI: 10.1016/j.devcel.2011.10.010
Source: PubMed

ABSTRACT Here, we report a cell-intrinsic mechanism by which oncogenic RAS promotes senescence while predisposing cells to senescence bypass by allowing for secondary hits. We show that oncogenic RAS inactivates the BRCA1 DNA repair complex by dissociating BRCA1 from chromatin. This event precedes senescence-associated cell cycle exit and coincides with the accumulation of DNA damage. Downregulation of BRIP1, a physiological partner of BRCA1 in the DNA repair pathway, triggers BRCA1 chromatin dissociation. Conversely, ectopic BRIP1 rescues BRCA1 chromatin dissociation and suppresses RAS-induced senescence and the DNA damage response. Significantly, cells undergoing senescence do not exhibit a BRCA1-dependent DNA repair response when exposed to DNA damage. Overall, our study provides a molecular basis by which oncogenic RAS promotes senescence. Because DNA damage has the potential to produce additional "hits" that promote senescence bypass, our findings may also suggest one way a small minority of cells might bypass senescence and contribute to cancer development.

Download full-text


Available from: Neil Beeharry, Sep 29, 2015
26 Reads
  • Source
    • "Immunofluorescence, BrdU Labeling, and SA-b-Gal Staining Immunofluorescence staining and BrdU labeling were performed as described previously using antibodies described above (Tu et al., 2011; Zhang et al., 2005, 2007a, 2007b). SA-b-gal staining was performed as previously described (Dimri et al., 1995). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncogene-induced senescence is characterized by a stable cell growth arrest, thus providing a tumor suppression mechanism. However, the underlying mechanisms for this phenomenon remain unknown. Here, we show that a decrease in deoxyribonucleotide triphosphate (dNTP) levels underlies oncogene-induced stable senescence-associated cell growth arrest. The decrease in dNTP levels is caused by oncogene-induced repression of ribonucleotide reductase subunit M2 (RRM2), a rate-limiting protein in dNTP synthesis. This precedes the senescence-associated cell-cycle exit and coincides with the DNA damage response. Consistently, RRM2 downregulation is both necessary and sufficient for senescence. Strikingly, suppression of nucleotide metabolism by RRM2 repression is also necessary for maintenance of the stable senescence-associated cell growth arrest. Furthermore, RRM2 repression correlates with senescence status in benign nevi and melanoma, and its knockdown drives senescence of melanoma cells. These data reveal the molecular basis whereby the stable growth arrest of oncogene-induced senescence is established and maintained through suppression of nucleotide metabolism.
    Cell Reports 04/2013; 3(4). DOI:10.1016/j.celrep.2013.03.004 · 8.36 Impact Factor
  • Source
    • "The human breast cancer cell line MCF7, which is BRCA1 and 53BP1 proficient, was depleted of BRCA1 via lentiviral transduction with shRNAs (Fig. 1 A and Fig. S1 A). As previously shown in human fibroblasts (Tu et al., 2011), depletion of BRCA1 in MCF7 cells induces growth arrest (Fig. 1 B). BRCA1-deficient cells did not show differences in the levels of 53BP1 or CTSL proteins immediately after growth arrest (Fig. 1 C). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of 53BP1 rescues BRCA1 deficiency and is associated with BRCA1-deficient and triple-negative breast cancers (TNBC) and with resistance to genotoxic drugs. The mechanisms responsible for decreased 53BP1 transcript and protein levels in tumors remain unknown. Here, we demonstrate that BRCA1 loss activates cathepsin L (CTSL)-mediated degradation of 53BP1. Activation of this pathway rescued homologous recombination repair and allowed BRCA1-deficient cells to bypass growth arrest. Importantly, depletion or inhibition of CTSL with vitamin D or specific inhibitors stabilized 53BP1 and increased genomic instability in response to radiation and poly(adenosine diphosphate-ribose) polymerase inhibitors, compromising proliferation. Analysis of human breast tumors identified nuclear CTSL as a positive biomarker for TNBC, which correlated inversely with 53BP1. Importantly, nuclear levels of CTSL, vitamin D receptor, and 53BP1 emerged as a novel triple biomarker signature for stratification of patients with BRCA1-mutated tumors and TNBC, with potential predictive value for drug response. We identify here a novel pathway with prospective relevance for diagnosis and customization of breast cancer therapy.
    The Journal of Cell Biology 01/2013; 200(2):187-202. DOI:10.1083/jcb.201204053 · 9.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in the United States. EZH2 silences gene expression through trimethylating lysine 27 on histone H3 (H3K27Me3). EZH2 is often overexpressed in EOC and has been suggested as a target for EOC intervention. However, EZH2 target genes in EOC remain poorly understood. Here, we mapped the genomic loci occupied by EZH2/H3K27Me3 using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and globally profiled gene expression in EZH2-knockdown EOC cells. Cross-examination of gene expression and ChIP-seq revealed a list of 60 EZH2 direct target genes whose expression was upregulated more than 1.5-fold upon EZH2 knockdown. For three selected genes (ALDH1A1, SSTR1, and DACT3), we validated their upregulation upon EZH2 knockdown and confirmed the binding of EZH2/H3K27Me3 to their genomic loci. Furthermore, the presence of H3K27Me3 at the genomic loci of these EZH2 target genes was dependent upon EZH2. Interestingly, expression of ALDH1A1, a putative marker for EOC stem cells, was significantly downregulated in high-grade serous EOC (n = 53) compared with ovarian surface epithelial cells (n = 10, P < 0.001). Notably, expression of ALDH1A1 negatively correlated with expression of EZH2 (n = 63, Spearman r = -0.41, P < 0.001). Thus, we identified a list of 60 EZH2 target genes and established that ALDH1A1 is a novel EZH2 target gene in EOC cells. Our results suggest a role for EZH2 in regulating EOC stem cell equilibrium via regulation of ALDH1A1 expression.
    Cancer Prevention Research 12/2011; 5(3):484-91. DOI:10.1158/1940-6207.CAPR-11-0414 · 4.44 Impact Factor
Show more