Article

Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence.

Women's Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
Developmental Cell (Impact Factor: 10.37). 11/2011; 21(6):1077-91.
Source: PubMed

ABSTRACT Here, we report a cell-intrinsic mechanism by which oncogenic RAS promotes senescence while predisposing cells to senescence bypass by allowing for secondary hits. We show that oncogenic RAS inactivates the BRCA1 DNA repair complex by dissociating BRCA1 from chromatin. This event precedes senescence-associated cell cycle exit and coincides with the accumulation of DNA damage. Downregulation of BRIP1, a physiological partner of BRCA1 in the DNA repair pathway, triggers BRCA1 chromatin dissociation. Conversely, ectopic BRIP1 rescues BRCA1 chromatin dissociation and suppresses RAS-induced senescence and the DNA damage response. Significantly, cells undergoing senescence do not exhibit a BRCA1-dependent DNA repair response when exposed to DNA damage. Overall, our study provides a molecular basis by which oncogenic RAS promotes senescence. Because DNA damage has the potential to produce additional "hits" that promote senescence bypass, our findings may also suggest one way a small minority of cells might bypass senescence and contribute to cancer development.

0 Bookmarks
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to its well-known role in the DNA damage response during interphase, the function of BRCA1 in the maintenance of chromosomal stability during mitosis remains to be defined. In this study, we uncover a novel role of BRCA1 in preserving centromere integrity in mitotic human cells. Using immunofluorescence and chromatin immunoprecipitation approaches, we report BRCA1 association with centromeric chromatin during mitosis. BRCA1 depletion impairs centromeric cohesion, leading to an increase in interkinetochore distance and in unpaired sister-chromatids frequency during prometaphase. Moreover, BRCA1 loss partially decreased accumulation of the Aurora B kinase at the centromere. We found that proper recruitment of the DNMT3b DNA methyltransferase to satellite sequences is BRCA1-dependent during mitosis, suggesting that DNA hypomethylation contributes to Aurora B mislocalization. BRCA1-deficient cells exhibited decreased ability to correct improper Aurora B-dependent chromosome-spindle attachments and to align chromosomes at metaphase. Finally, we show that BRCA1 disruption promotes merotelic kinetochore attachments that represent a major mechanism of aneuploidy in human cells. In summary, we report here a novel function of BRCA1 in maintaining chromosomal stability through its contribution to the mitotic centromere integrity necessary for faithful segregation of sister-chromatids during cell division.-Di Paolo, A., Racca, C., Calsou, P., and Larminat, F. Loss of BRCA1 impairs centromeric cohesion and triggers chromosomal instability.
    The FASEB Journal 09/2014; · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
    International review of cell and molecular biology 01/2015; 314:171-237. · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The FANCJ DNA helicase is mutated in hereditary breast and ovarian cancer as well as the progressive bone marrow failure disorder Fanconi anemia (FA). FANCJ is linked to cancer suppression and DNA double strand break repair through its direct interaction with the hereditary breast cancer associated gene product, BRCA1. FANCJ also operates in the FA pathway of interstrand cross-link repair and contributes to homologous recombination. FANCJ collaborates with a number of DNA metabolizing proteins implicated in DNA damage detection and repair, and plays an important role in cell cycle checkpoint control. In addition to its role in the classical FA pathway, FANCJ is believed to have other functions that are centered on alleviating replication stress. FANCJ resolves G-quadruplex (G4) DNA structures that are known to affect cellular replication and transcription, and potentially play a role in the preservation and functionality of chromosomal structures such as telomeres. Recent studies suggest that FANCJ helps to maintain chromatin structure and preserve epigenetic stability by facilitating smooth progression of the replication fork when it encounters DNA damage or an alternate DNA structure such as a G4. Ongoing studies suggest a prominent but still not well-understood role of FANCJ in transcriptional regulation, chromosomal structure and function, and DNA damage repair to maintain genomic stability. This review will synthesize our current understanding of the molecular and cellular functions of FANCJ that are critical for chromosomal integrity.
    Frontiers in Genetics 10/2014; 5:372.

Full-text (2 Sources)

Download
34 Downloads
Available from
May 28, 2014