Article

Inhibitory activity of α-amylase and α-glucosidase by plant extracts from the Brazilian cerrado.

Department of Pharmaceutical Sciences, School of Health Sciences, Campus Darcy Ribeiro, University of Brasília, Brasília, Brazil.
Planta Medica (Impact Factor: 2.35). 12/2011; 78(4):393-9. DOI: 10.1055/s-0031-1280404
Source: PubMed

ABSTRACT Diabetes mellitus is the most common disease in the world. One therapeutic approach for treating diabetes is inhibition of α-amylase and α-glucosidase activities to reduce postprandial blood glucose levels. In vitro tests showed that several plant extracts from Brazilian cerrado species can inhibit the activity of α-amylase and α-glucosidase. The extracts of Eugenia dysenterica, Stryphnodendron adstringens, Pouteria caimito, Pouteria ramiflora, and Pouteria torta showed strong α-amylase and α-glucosidase inhibitory activity. Eugenia dysenterica, P. caimito, P. ramiflora, and P. torta aqueous extracts exerted the highest activity against α-amylase (IC₅₀) values of 14.93, 13.6, 7.08, and 5.67 µg/mL, respectively) and α-glucosidase (IC₅₀ values of 0.46, 2.58, 0.35, and 0.22 µg/mL, respectively). Stryphnodendron adstringens ethanol extract also exhibited inhibitory activity against both enzymes (IC₅₀) 1.86 µg/mL against α-amylase and 0.61 µg/mL against α-glucosidase). The results suggest that the activity of these cerrado plants on α-amylase and α-glucosidase represents a potential tool for development of new strategies for treatment of diabetes.

1 Bookmark
 · 
223 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus is a chronic disease involving persistent hyperglycemia, which causes an imbalance between reactive oxygen species and antioxidant enzymes and results in damage to various tissues, including the brain. Many societies have traditionally employed medicinal plants to control the hyperglycemia. Pouteria ramiflora, a species occurring in the savanna biome of the Cerrado (Brazil) has been studied because of its possible ability to inhibit carbohydrate digestion. Rats with streptozotocin-induced diabetes treated with an alcoholic extract of Pouteria ramiflora show an improved glycemic level, increased glutathione peroxidase activity, decreased superoxide dismutase activity, and reduced lipid peroxidation and antioxidant status. The extract also restored myosin-Va expression and the nuclear diameters of pyramidal neurons of the CA3 subregion and that of the polymorphic cells of the hilus. We conclude that Pouteria ramiflora extract exerts a neuroprotective effect against oxidative damage and myosin-Va expression and is able to prevent hippocampal neuronal loss in the CA3 and hilus subfields of diabetic rats. However, future studies are needed to understand the mechanism of action of Pouteria ramiflora extract in acute and chronic diabetes.
    Metabolic Brain Disease 03/2013; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 2 3 full factorial design was used to assess the impact of spraying air fl ow rate (30-50 L/min), drying air inlet temperature (90-150 ºC) and extract feed rate (4-6 g/min) on the quality of Eugenia dysenterica DC., Myrtaceae, spray-dried extracts. Response surface methodology (RSM) was applied to analyze the signifi cance of the effects of process factors on product quality and to obtain fi tted equations to predict dry powder properties. Powder yields were satisfactory, ranging from 34.64 to 63.92%. The dried products showed moisture contents and water activities below 5% and 0.5, respectively. The recuperation ratios of total polyphenols, tannins and fl avonoids ranged from 88.66 to 99.07%, 70.38 to 81.87% and 74.51 to 98.68%, respectively. Additionally, in some conditions the parameters related to dry product's fl owability and compressibility varied over a range acceptable for pharmaceutical purposes. RSM proved that studied factors signifi cantly affected most of the quality indicators at different levels. The spray drying technology is an attractive and promising alternative for the development of intermediate phytopharmaceutical products of E. dysenterica.
    Revista Brasileira de Farmacognosia 01/2013; 23(1):115-123. · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Context: A methanol extract of Cyperus rotundus L. (Cyperaceae) rhizomes showed inhibitory activity against α-glucosidase and α-amylase, two enzymes involve in carbohydrate digestion. Objective: Identification of compounds from C. rotundus rhizomes responsible for the inhibition of α-glucosidase and α-amylase. Materials and methods: Compounds were identified by a phytochemical investigation using combined chromatographic and spectroscopic methods. α-glucosidase and α-amylase inhibitory activities were evaluated by in vitro enzyme inhibition assays. Results: A new (2RS,3SR)-3,4',5,6,7,8-hexahydroxyflavane (1), together with three known stilbene dimers cassigarol E (2), scirpusin A (3) and B (4) were isolated. Compound 2 inhibited both α-glucosidase and α-amylase activities while the flavane 1 only showed effect on α-amylase, and compounds 3 and 4 were active on α-glucosidase. All four compounds showed significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Discussion: The inhibitory activities against α-amylase and α-glucosidase of the C. rotundus rhizomes were reported for the first time. Stilbene dimers are considered as potent inhibitors of α-glucosidase and promising antihyperglycemic agents. Conclusion: The isolated compounds may contribute to the antidiabetic property of C. rotundus.
    Pharmaceutical Biology 09/2013; · 1.21 Impact Factor