Article

Electrogenic events upon photolysis of CO from fully reduced cytochrome c oxidase.

Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2011; 1817(2):269-75. DOI: 10.1016/j.bbabio.2011.11.005
Source: PubMed

ABSTRACT CO photolysis from fully reduced Paracoccus denitrificans aa(3)-type cytochrome c oxidase in the absence of O(2) was studied by time-resolved potential electrometry. Surprisingly, photo dissociation of the uncharged carbon monoxide results in generation of a small-amplitude electric potential with the same sign as the physiological charge separation during activity. The number of electrogenic events after CO photolysis depends on the state of the enzyme. CO photolysis following immediately after activation by an enzymatic turnover, showed a two-component potential development. A fast (~1.5μs) phase was followed by slower potential generation with a time constant varying from 8μs at pH 7 to 250μs at pH 10. The amplitude of the fast phase was independent of the time of incubation after enzyme activation, whereas the slower phase vanished with a time constant of ~25min. CO photolysis from enzyme that had not undergone a prior single turnover showed the fast phase, but the amplitude of the slow phase was reduced to 10-30%. The amplitude of the fast phase corresponds to charge movement of 0.83Å perpendicular to the membrane dielectric, and is independent of the time after enzyme activation. Thus it can be used as an internal ruler for normalization of the electrogenic responses of CcO. The slow phase was absent in the K354M mutant with a blocked proton-conducting K channel. We propose that CO photolysis increases the pK of the K354 residue, which results in its partial protonation, and generation of electric potential.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure of the two-subunit cytochrome c oxidase from Paracoccus denitrificans has been refined using X-ray cryodata to 2.25 A resolution in order to gain further insights into its mechanism of action. The refined structural model shows a number of new features including many additional solvent and detergent molecules. The electron density bridging the heme a(3) iron and Cu(B) of the active site is fitted best by a peroxo-group or a chloride ion. Two waters or OH(-) groups do not fit, one water (or OH(-)) does not provide sufficient electron density. The analysis of crystals of cytochrome c oxidase isolated in the presence of bromide instead of chloride appears to exclude chloride as the bridging ligand. In the D-pathway a hydrogen bonded chain of six water molecules connects Asn131 and Glu278, but the access for protons to this water chain is blocked by Asn113, Asn131 and Asn199. The K-pathway contains two firmly bound water molecules, an additional water chain seems to form its entrance. Above the hemes a cluster of 13 water molecules is observed which potentially form multiple exit pathways for pumped protons. The hydrogen bond pattern excludes that the Cu(B) ligand His326 is present in the imidazolate form.
    Biochimica et Biophysica Acta 05/2009; 1787(6):635-45. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O(2) reduction at the haem a(3)-Cu(B) centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikström, Nature 266 (1977) 271; M. Wikström, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 ). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 ). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Delta-propionate of haem a(3) (pumping), or to haem a(3)-Cu(B) (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a(3)-Cu(B), which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O(2) reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations.
    Biochimica et Biophysica Acta 07/2003; 1604(2):61-5. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have studied a charge-insertion process that models the deprotonation of a histidine side chain in the active site of cytochrome c oxidase (CcO) using both the continuum electrostatic calculations and the microscopic simulations. The group of interest is a ligand to Cu(B) center of CcO, which has been previously suggested to play the role of the proton pumping element in the enzyme; the group is located near a large internal water cavity in the protein. Using the nonpolarizable Amber-99 force field in molecular dynamics (MD) simulations, we have calculated the nuclear part of the reaction-field energy of charging of the His group and combined it with the electronic part, which we estimated in terms of the electronic continuum (EC) model, to obtain the total reaction-field energy of charging. The total free energy obtained in this MDEC approach was then compared with that calculated using pure continuum electrostatic model with variable dielectric parameters. The dielectric constant for the "dry" protein and that of the internal water cavity of CcO were determined as those parameters that provide best agreement between the continuum and microscopic MDEC model. The nuclear (MD) polarization alone (without electronic part) of a dry protein was found to correspond to an unphysically low dielectric constant of only about 1.3, whereas the inclusion of electronic polarizability increases the protein dielectric constant to 2.6-2.8. A detailed analysis is presented as to how the protein structure should be selected for the continuum calculations, as well as which probe and atomic radii should be used for cavity definition. The dielectric constant of the internal water cavity was found to be 80 or even higher using "standard" parameters of water probe radius, 1.4 A, and protein atomic radii from the MD force field for cavity description; such high values are ascribed to the fact that the standard procedure produces unphysically small cavities. Using x-ray data for internal water in CcO, we have explored optimization of the parameters and the algorithm of cavity description. For Amber radii, the optimal probe size was found to be 1.25 A; the dielectric of water cavity in this case is in the range of 10-16. The most satisfactory cavity description, however, was achieved with ProtOr atomic radii, while keeping the probe radius to be standard 1.4 A. In this case, the value of cavity dielectric constant was found to be in the range of 3-6. The obtained results are discussed in the context of recent calculations and experimental measurements of dielectric properties of proteins.
    The Journal of Chemical Physics 03/2009; 130(8):085103. · 3.16 Impact Factor

Full-text (2 Sources)

View
4 Downloads
Available from
May 26, 2014