Article

Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes.

Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(11):e27799. DOI: 10.1371/journal.pone.0027799
Source: PubMed

ABSTRACT The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some 5 years ago, the stem cells of the adult pituitary gland were discovered. Subsequent in-depth characterization revealed expression of several stemness markers and embryo-typical factors. Now, the quest is open to decipher their role in the gland. When and how pituitary stem cells differentiate to contribute to the mature hormone-producing cell populations is not known. New research models support their involvement in cell regeneration after injury in the gland, and suggest a possible role in pituitary tumor formation. From their expression phenotype, pituitary stem cells seem to re-use embryonic developmental programs during the creation of new hormonal cells. Here, we will review the latest progression in the domain of pituitary stem cells, including the uncovering of some new molecular flavours and of the first potential functions. Eventually, we will speculate on their differentiation programs towards hormonal cells, with a particular focus on gonadotropes.
    Molecular and Cellular Endocrinology 08/2013; · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction.
    Frontiers in Neuroendocrinology 06/2014; · 7.99 Impact Factor

Full-text (2 Sources)

View
6 Downloads
Available from
Jun 19, 2014