First chemical feature-based pharmacophore modeling of potent retinoidal retinoic acid metabolism blocking agents (RAMBAs): Identification of novel RAMBA scaffolds

Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 130 South 9th Street, Philadelphia, PA 19107, USA.
European Journal of Medicinal Chemistry (Impact Factor: 3.45). 11/2011; 47(1):412-23. DOI: 10.1016/j.ejmech.2011.11.010
Source: PubMed


The first three-dimensional (3D) pharmacophore model was developed for potent retinoidal retinoic acid metabolism blocking agents (RAMBAs) with IC(50) values ranging from 0.0009 to 5.84nM. The seven common chemical features in these RAMBAs as deduced by the Catalyst/HipHop program include five hydrophobic groups (hydrophobes), and two hydrogen bond acceptors. Using the pharmacophore model as a 3D search query against NCI and Maybridge conformational Catalyst formatted databases; we retrieved several compounds with different structures (scaffolds) as hits. Twenty-one retrieved hits were tested for RAMBA activity at 100nM concentration. The most potent of these compounds, NCI10308597 and HTS01914 showed inhibitory potencies less (54.7% and 53.2%, respectively, at 100nM) than those of our best previously reported RAMBAs VN/12-1 and VN/14-1 (90% and 86%, respectively, at 100nM). Docking studies using a CYP26A1 homology model revealed that our most potent RAMBAs showed similar binding to the one observed for a series of RAMBAs reported previously by others. Our data shows the potential of our pharmacophore model in identifying structurally diverse and potent RAMBAs. Further refinement of the model and searches of other robust databases is currently in progress with a view to identifying and optimizing new leads.

Download full-text


Available from: Puranik Purushottamachar, Mar 09, 2014
1 Follower
43 Reads
  • Source
    • "Retinoic acid (Fig. 1) is derived from retinol and presents two biologically relevant isomers, namely the alltrans retinoic acid (ATRA) and the 9-cis-retinoic acid. In previously reported studies ATRA showed to be effective in the treatment and/or chemoprevention of several epithelial and hematological malignancies such as breast and lung cancer, promyelocytic leukemia, ovarian adenocarcinoma and human malignant gliomas [6] [7] [8] as well as diverse dermatological diseases such as acne, psoriasis and ichthyosis [3] [9]. It has also proved to play a major role in maintaining the integrity of the cornea since it induces the proliferation and differentiation of corneal epithelial cells on both normal and diseased eye [10] [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: All-trans retinoic acid (ATRA) is a derivative of retinol (or vitamin A) presenting similar benefits but considerable lower adverse toxicity, mainly in cases of high or long-term therapeutic doses. ATRA showed to be effective in the treatment and/or chemoprevention of several epithelial and hematological malignancies and diverse dermatological and eye diseases however, its low solubility in aqueous media and photosensitivity hinder its wider usage by the conventional administration methods. Supercritical fluids technologies are being widely used to enhance the in vivo bioactivity of this type of drugs both by improving their dissolution rate (using particle size reduction processes) and/or by controlling their release into the media after incorporation into solid polymeric/inorganic matrices (using supercritical impregnation/foaming processes). In both cases the solubility of the drug in the supercritical fluid (usually scCO2) is required for process optimization purposes. Therefore, in this work the solubility of ATRA in scCO2 was measured at different isotherms (308.2, 318.2 and 328.2 K) and pressures that ranged from 10 up to 30 MPa using a static analytical method. Solubility data were correlated using three commonly used density-based models, namely the Bartle, Chrastil and Méndez-Santiago-Teja models. The solubility of ATRA in scCO2 was found to be between 1.52 × 10−6 and
    Journal of Supercritical Fluids The 01/2015; 98. DOI:10.1016/j.supflu.2014.12.027 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant activation of casein kinase 1 (CK1) has been demonstrated to be implicated in the pathogenesis of cancer and various central nervous system disorders. Discovery of CK1 inhibitors has thus attracted much attention in recent years. In this account, we describe the discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors. An optimal common-feature pharmacophore hypothesis, termed Hypo2, was firstly generated, followed by virtual screening using Hypo2 against several chemical databases. One of the best hit compounds, N6-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine, was chosen for the subsequent hit-to-lead optimization under the guide of Hypo2, which led to the discovery of a new lead compound (1-(3-(3-amino-1H-pyrazolo[3,4-d]pyrimidin-6-ylamino)phenyl)-3-(3-chloro-4-fluorophenyl)urea) that potently inhibits CK1 with an IC(50) value of 78 nM.
    European Journal of Medicinal Chemistry 08/2012; 56:30-8. DOI:10.1016/j.ejmech.2012.08.007 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase B (PKB) is a key mediator of proliferation and survival pathways that are critical for cancer growth. Therefore, inhibitors of PKB are useful agents for the treatment of cancer. Herein, we describe pharmacophore-based virtual screening combined with docking study as a rational strategy for identification of novel hits or leads. Pharmacophore models of PKB β inhibitors were established using the DISCOtech and refined with GASP from compounds with IC50 values ranging from 2.2 to 246nM. The best pharmacophore model consists of one hydrogen bond acceptor (HBA), one hydrogen bond donor (HBD) site and two hydrophobic (HY) features. The pharmacophore models were validated through receiver operating characteristic (ROC) and Güner-Henry (GH) scoring methods indicated that the model-3 was statistically valuable and reliable in identifying PKB β inhibitors. Pharmacophore model as a 3D search query was searched against NCI database. Several compounds with different structures (scaffolds) were retrieved as hits. Molecules with a Qfit value of more than 95 and three other known inhibitors were docked in the active site of PKB to further explore the binding mode of these compounds. Finally in silico pharmacokinetic and toxicities were predicted for active hit molecules. The hits reported here showed good potential to be PKB β inhibitors.
    Journal of molecular graphics & modelling 02/2013; 42C:17-25. DOI:10.1016/j.jmgm.2013.01.010 · 1.72 Impact Factor
Show more