Article

Fear extinction as a model for translational neuroscience: ten years of progress.

Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA.
Annual Review of Psychology (Impact Factor: 20.53). 01/2012; 63:129-51.
Source: PubMed

ABSTRACT The psychology of extinction has been studied for decades. Approximately 10 years ago, however, there began a concerted effort to understand the neural circuits of extinction of fear conditioning, in both animals and humans. Progress during this period has been facilitated by a high degree of coordination between rodent and human researchers examining fear extinction. Here we review the major advances and highlight new approaches to understanding and exploiting fear extinction. Research in fear extinction could serve as a model for translational research in other areas of behavioral neuroscience.

1 Bookmark
 · 
298 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anxiety, trauma and stress-related disorders are often characterized by a loss of context-appropriate emotional responding. The contextual retrieval of emotional memory involves hippocampal projections to the medial prefrontal cortex and amygdala; however the relative contribution of these projections is unclear. To address this question, we characterized retrieval-induced Fos expression in ventral hippocampal (VH) neurons projecting to the prelimbic cortex (PL) and basal amygdala (BA) after the extinction of conditioned fear in rats. After extinction, freezing behavior (an index of learned fear) to the auditory conditioned stimulus was suppressed in the extinction context, but was "renewed" in another context. Hippocampal neurons projecting to either PL or BA exhibited similar degrees of context-dependent Fos expression; there were more Fos-positive neurons in each area after the renewal, as opposed, to suppression of fear. Importantly, however, VH neurons projecting to both PL and BA were more likely to express Fos during fear renewal than neurons projecting to either PL or BA alone. These data suggest that although projections from the hippocampus to PL and BA are similarly involved in the contextual retrieval of emotional memories, VH neurons with collaterals to both areas may be particularly important for synchronizing prefrontal-amygdala circuits during fear renewal.
    Scientific reports. 01/2015; 5:8388.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.
    Frontiers in Systems Neuroscience 12/2014; 8:230.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example D-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
    Pharmacology [?] Therapeutics 12/2014; 122. · 7.75 Impact Factor

Preview

Download
9 Downloads
Available from