Article

MicroRNA let-7c Suppresses Androgen Receptor Expression and Activity via Regulation of Myc Expression in Prostate Cancer Cells

Department of Urology, University of California at Davis, Sacramento, California 95817, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2011; 287(2):1527-37. DOI: 10.1074/jbc.M111.278705
Source: PubMed

ABSTRACT Castration-resistant prostate cancer continues to rely on androgen receptor (AR) expression. AR plays a central role in the development of prostate cancer and progression to castration resistance during and after androgen deprivation therapy. Here, we identified miR-let-7c as a key regulator of expression of AR. miR-let-7c suppresses AR expression and activity in human prostate cancer cells by targeting its transcription via c-Myc. Suppression of AR by let-7c leads to decreased cell proliferation of human prostate cancer cells. Down-regulation of Let-7c in prostate cancer specimens is inversely correlated with AR expression, whereas the expression of Lin28 (a repressor of let-7) is correlated positively with AR expression. Our study demonstrates that the miRNA let-7c plays an important role in the regulation of androgen signaling in prostate cancer by down-regulating AR expression. These results suggest that reconstitution of miR-let-7c may aid in targeting enhanced and hypersensitive AR in advanced prostate cancer.

1 Follower
 · 
166 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed, as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets. Herein we review the potential impact of the microRNA let-7 family on prostate cancer and show how deregulation of several of its target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety of other human malignant neoplasias.
    BioMed Research International 09/2014; 2014:376326. DOI:10.1155/2014/376326 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. Despite considerable advances in prostate cancer early detection and clinical management, validation of new biomarkers able to predict the natural history of tumor progression is still necessary in order to reduce overtreatment and to guide therapeutic decisions. MicroRNAs are endogenous noncoding RNAs which offer a fast fine-tuning and energy-saving mechanism for posttranscriptional control of protein expression. Growing evidence indicate that these RNAs are able to regulate basic cell functions and their aberrant expression has been significantly correlated with cancer development. Therefore, detection of microRNAs in tumor tissues and body fluids represents a new tool for early diagnosis and patient prognosis prediction. In this review, we summarize current knowledge about microRNA deregulation in prostate cancer mainly focusing on the different clinical aspects of the disease. We also highlight the potential roles of microRNAs in PCa management, while also discussing several current challenges and needed future research.
    BioMed Research International 01/2014; 2014:146170. DOI:10.1155/2014/146170 · 2.71 Impact Factor
  • 03/2012; 3(01). DOI:10.4172/2157-7536.1000e103

Similar Publications