Article

Disassociation between Preprandial Gut Peptide Release and Food-Anticipatory Activity

Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, Maryland 21205, USA.
Endocrinology (Impact Factor: 4.72). 11/2011; 153(1):132-42. DOI: 10.1210/en.2011-1464
Source: PubMed

ABSTRACT Animals learn to anticipate a meal as evidenced by increases in premeal activity. This learned response appears to be independent of the nutrient status of an animal because food-anticipatory activity (FAA) can be seen after entrainment by a highly palatable food when rats remain ad libitum on chow. Mealtime feeding not only induces an increase in activity but also appears to entrain the secretion of various peptides prior to a meal including insulin, ghrelin, and glucagon-like peptide-1 (GLP-1). It is not clear whether these meal-anticipatory changes in peptides are causally associated with FAA. To assess whether FAA and preprandial peptide changes co-occur with meal entrainment using different diets, rats were conditioned to receive a 6-h chow meal, 6-h high-fat meal, or 2 h access of chocolate while ad libitum on chow in the middle of the light cycle. FAA was measured for 4 h prior to mealtime. Rats were then killed at 90, 60, and 30 min prior to mealtime and plasma was collected. Although the chocolate-entrained rats showed comparable FAA with the nonchocolate-entrained animals, they did not show anticipatory increases in the ghrelin or GLP-1. All entrainment conditions induced a decrease in insulin and an increase in glucose prior to mealtime. These data suggest that separate mechanisms may underlie the preprandial increases in ghrelin and GLP-1 and changes in FAA, insulin, and glucose.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic) in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different meals.
    PLoS ONE 12/2014; 9(12):e112451. DOI:10.1371/journal.pone.0112451 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD.
    Frontiers in Aging Neuroscience 09/2014; 6. DOI:10.3389/fnagi.2014.00234 · 2.84 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal nutrient infusions result in variable decreases in food intake and body weight based on the nutrient type and the specific intestinal infusion site. We previously found that intrajejunal infusions of a fatty acid and glucose, but not casein hydrolysate, decreases food intake and body weight in lean chow-fed laboratory rats. To test whether obese, high fat-fed animals would show similar decreases in food intake and body weight in response to intrajejunal infusions of the same nutrients, equal kilocalorie loads of these nutrients (11.4 kcal) or vehicle were infused into the jejunum of obese, high fat-fed male Sprague-Dawley rats over 7 h/day for 5 consecutive days. Food intake was continuously monitored, and body weight was measured daily. After the infusion on the final day, rats were killed and plasma was collected. Similar to lean chow-fed rats, intrajejunal infusions of linoleic acid (LA) and glucose (Glu), but not casein hydrolysate (Cas), suppressed food intake with no compensatory increase in food intake after the infusion period. In contrast to lean chow-fed rats, only the LA, and not the Glu or Cas, produced decreases in body weight in the obese high fat-fed rat. There also were no differences in plasma glucagon-like peptide-1 levels in any of the nutrient infusion groups compared with saline infusion. These results suggest that there is a differential response to the same nutrients in lean vs. obese animals.
    AJP Regulatory Integrative and Comparative Physiology 03/2014; 306(6):R420-R428. DOI:10.1152/ajpregu.00410.2013 · 3.53 Impact Factor